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Abstract. Let p be a symmetric Gaussian measure on a separable Banach

space (E, || • ||). Denote U = {x : \\x\\ < 1}. Then for every x £ supp p ,

x ^ 0, the function / —> p(U + tx) is strictly decreasing for / e (0, oo).

The same property holds for symmetric p-stable measures on E. Using this

property we answer a question of W. Linde : if fu+, x dp(x) = 0 , then z = 0.

1. Notation and basic properties of Gaussian measures

We start by recalling some basic notation and facts concerning Gaussian

measures on Banach spaces. For the proofs the reader may consult [LePage] or

[Bor] .
Throughout the paper (E, \\ • ||) denotes a separable Banach space. Let p

be a symmetric Gaussian measure on E. By supp p we denote the support
of p which is a linear subspace of E. Let us mention that x £ supp p if

and only if p{y £ E : \\y - x\\ < e} > 0 for every e > 0. Let E^(p) denote
a closure of E* (topological dual of E) in L2(p). For every / £ E^(p) we

define an operator Q by the formula Qf = / f(x)xdp(x). Then Q maps
E

E^(p) onto a subspace of E which we denote Hp. Let Q' : E* -» Ej*(p)

be the natural injection. Then the covariance operator R of p is defined

by the following formula: R = QQ : E* -> Hp. For every h £ Hp there

exists the unique element h £ E^(p) such that Qh = h. Then the formula

(hi ,h2) = jhx(x) h2(x) dp(x) defines a scalar product in HM and this, in turn,
E

defines a norm on Hp : WhWp = (h, /z)i. Hß equipped with this norm is a

Hubert space, we call it the reproducing kernel Hubert space (RKHS) of p.
Hp is dense in the support of p and consists of the admissible translates of the
measure p . For y £ E let us denote by py the translated measure defined by

Py(') = p(- +y). There holds the following important fact.

Proposition 1 (Cameron-Martin formula [C-M]). For each h £ Hß the measure

pn is absolutely continuous with respect to p and for every measurable set A we
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have

ph(A) = exp(~\\h\\l)Je-h^dp(x).
A

Applying the above proposition we obtain the following corollary.

Corollary 1. Let f £ E*  with j P(x)dp(x) = 1. Set z0 = Rf £ Hß and
E

y = Sf(gzo + X), where &(X) = p and g is the standard Gaussian random
variable on the real line, independent ofX. Then y is absolutely continuous with
respect to p and

The following fact may be derived from the so-called log-concavity property
of Gaussian measures (see e.g. [Bor], Theorem 3.2), but it was proved for the

first time by Anderson [And] for unimodal distributions on R" , hence we call
it the Anderson property of Gaussian measures.

Proposition 2 (Anderson property of Gaussian measures). If p is a symmetric

Gaussian measure on E and C is a convex, symmetric measurable subset of
E, then for every x £ E

p(C)>p(C + x).

2. Main result

Our main result states that the above inequality must be strict if only ^^0.
We precede the proof of this fact with a lemma. Let us denote Ut = {x £ E :

\\x\\ < t} and UX = U.

Lemma 1. Suppose that x0 ^ 0 is such that ((U + xo) \U)f) supp^i # 0. Then
there exists a functional f £ E* such that for some uo> 0:

U c {|/| < Mo},   P((U + xo) n {|/| < Mo}) > 0 and J f2(x) dp(x) = 1.

E

Proof. Let y £ (( U + x0) \ U) n supp p. Since (U + Xo)\U is open, there exists

a closed ball Uy} with center at y suchthat U {y} c ((U + Xo) \ U). Now

the conclusion of the lemma yields from the convexity of U and Uy}, the

Hahn-Banach theorem and the fact that pÇOy}) > 0.

Now we are able to state the main result of this paper.

Theorem 1. Let Xo £ E. Then p(U + x0) = p(U) if and only if

p((U + xo) \ U)) + p(U \ (U + xo)) = 0.

Before proving Theorem 1 we derive an important corollary.

Corollary 2. Let Xo ̂  0. Then p(U + Xo) < p(U) in the following cases:

(1) xo  £  supp p.
(2) || • || is strictly convex.
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Proof of the corollary. (1) It is clear that for some X > 1 we have

||Ax0 -xo\\ = (X- l)||.xo|| < ! and X\\xo\\ > 1.

Therefore Xxo £ (U + xo)\U. Since supp p is a linear subspace of E, we get

p((U + x0)\U)>0.
(2) There exists an y e dU n supp^z. (If it were not true, then p would

be So .) If y $ d(U + x0), then either Xy £ (U + Xo) \ U for some X > 1

or Xy £ U \( U + xo) for some X < 1. In both cases Xy £ supp//n

[(U \(U + xo)) U (U + xo) \ U)] and the last set has positive measure. Now
we assume that y £ dU nd(U + x0). From the strict convexity of the norm

l|v + x0|| + \\y - xoll > 2||y|| = 2 and then ||xo + y|| > 1. Clearly, for some X,
0 < X < 1, we have \\ - Xy - x0|| > 1 and || - Xy\\ = X < 1. This means that

-Xy £ (U\(U + xo))C\ supp p. Hence p(U\(U + x0)) > 0.

Proof of Theorem 1. Suppose that p((U + x0) \ U) > 0. Then ((U + x0)\V)n
supp/i t¿ 0 and, by Lemma 1, we find an f £ E* such that / f2(x)dp(x) = 1

E

and for some Mo > 0

(1) Uc{\f\<uo} andM(^ + *o)n{|/|>M0})>0.

Let y be a symmetric Gaussian measure defined in Corollary 1, and let h(y) =

%¡L(y) = -L exp(¿^). Denote D, = {y £ E : h(y) <t}, t > 0. From the form

of h it is clear that Dt c Dt< for t < t' ; Dt are symmetric, convex sets (strips
in E) and there exists some To > 0 such that

(2) (U + x0)cDTo and U c Dn.

Let us consider the following distribution functions:

FXo(t) = p((U + x0) n Dt) and F(t) = p(U DD,),   t > 0.

From the convexity of Dt and U it follows that

i((i/ + xo) n A) + ¿((C/ - xo) n Dt) c £/ n Dt,

and then we can apply the log-concavity property ([Bor], Theorem 3.2) to con-

clude that

p(UnDt)>p$((U + Xo)nDt)pH(U-Xo)nDt).

Next, by the symmetry of U and Dt, the last statement is equivalent to

(3) FX0(t)<F(t).

Using Proposition 2 and Corollary 1 and integrating by parts we get

0>y(U + x0)-y(U)= j h(y)dp(y)-J h(y)dp(y)
U+xo U

T0 T0

= JtdFXo(t)-jtdF(t)
o o

To

= T0[FXo(To) - F(To)] - J(FX0(t) - F(t))dt.
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Knowing that FXo(T0) = p(U + xo) and F(T0) = p(U) we can rewrite the last

inequality as
To

p(U)-p(U + x0) > yo ¡iFit) - FxM dt.

o

From (1) and (3) it is clear that the integral must be strictly positive. To com-

plete the proof we have to consider the situation when p(U\(U + xo)) > 0 and

p((U + xo) \U) = 0. But then

p(U) - p(U + xo) = p(U) - p(U \ (U + xo)) > 0.

The proof is complete.

The same property holds for measures which are mixtures of Gaussian ones.

For example we have the following.

Corollary 3. Let p be a symmetric p-stable measure on E. Then for every

x £ supp p we have

p(U)>p(U + x).

Proof. By the well-known representation of symmetric stable measures as a
mixture of Gaussian (compare e.g. [LP-W-Z] or [Szt] ) we have for measurable

set A: p(A) = j y,(A)dm(t), where yt are symmetric Gaussian, m is a finite
T

measure on some measurable space T, and supp y, = supp p for w-almost all

t. Because y,(U) - yt(U + x) > 0, it follows that p(U) - p(U + x) > 0 as
we claimed.

Remark. In order to get the strict Anderson inequality we must assume that the

translate x or the norm || • || have some additional properties.

Example. Let E — R2 be equipped with the maximum norm ||(x,y)|| =

max(|x|, |y|). Let p be the one-dimensional standard Gaussian measure that

is regarded as a measure on R2 and has the axis Ox as its support. Then

for every t, 0 < t < 1 , p(Ux + (0, t)) = p(Ux), because Ux tlsuppp =

[Ux + (0, t)] n supp/i. Observe that in this example neither the norm is strictly
convex nor (0, t) belongs to the supp//. However, when z has a non-zero

second coordinate, then p(U + z) < p(U).

3. Solution of a problem of Linde

In his paper [Lin] Linde examined the smoothness properties of the function

x —► p(Us + x) for p Gaussian. Namely, he showed that this function is

Gateaux differentiable at every x £ supp//, that is, there exists a continuous

linear functional d(s,x)(-) suchthat

d(s, x)(y) = lim -[p(Vs + x + ey) - p(Vs + x)].

By virtue of the log-concavity, in the separable Banach spaces the Gaussian

measure of d(Us + x) is zero for every x € supp// and 5 > 0 (compare [HJ-

S-D] for the proof of this fact if x = 0 ), hence Linde's result is also valid for

Us instead of TJS. Linde showed that the differential d(s, x)(») is non-trivial
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if ||x|| > s and asked about the case ||x|| < j . Now we show that d(s, x) is a

non-zero functional if only x ^ 0, what is more, we show that d(s, x)(x) < 0.

The next theorem answers in positive the question of Linde we mentioned
earlier.

Theorem 2. In the above setting, for every x £ supp/z,   x ^ 0,

d(s, x)(x) < 0.

Proof. Consider a function fx(t) - ut^+tx) for x / 0 . Then fx is even,

convex and strictly increasing on (0, oo). It is clear that fx is even and tends

to infinity as t —> oo. By log-concavity of the measure p we conclude that the

function t -* logp(Us + tx) is concave, hence ' ? , = exp(-logp(Us + tx))

is convex. But Theorem 1 implies that fx(t) > fx(0) for every t > 0, hence fx

is strictly increasing (because it is convex).
Next, by easy computations we get for x £ supp p :

d(s, x)(x) = lim -[p(Us +X + EX)- p(Us + x)] = (fx(t)~x)'t=x.
£—»0 £

But fx is strictly increasing and convex, hence (fx)'l=x > 0, which implies that

f'(l)
d(s,x)(x) = -j^<0.

As it was shown in Linde's paper [Lin] it is easy to compute d(s, z)(h) for

h £ H(p). Namely, using the Cameron-Martin formula (Proposition 1) we get

d(s,z)(h) = -   / h(x)dp(x) = -h( / xdp(x)).

Us+z Us+z

Now we show that for Gaussian measure p the condition  / x dp(x) = 0
Us+z

implies z = 0.

Theorem 3. Let p be a symmetric Gaussian measure on E. If z £ supp/i, then
/  xdp(x) = 0 implies z = 0.

Us+z

Proof. Arguing as at the beginning of the proof of Theorem 2 we infer that

the function gn(t) = ß{UJz+tn) is convex for all h £ Hß. If z ^ 0, then, by

Theorem 1, p(Us + z) < p(Us) , hence for at least one ho £ Hß, the derivative

g'h (0) is not equal to zero ( gho attains its minimum at some t ^ 0 ), so that

0 t¿ d(s, z)(ho) = -ho( J xdp(x)) which, of course, is equivalent to the
Us+z

condition   / xdp(x)^0.
Us+z
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