Bounded sets in (LF)-spaces
HTML articles powered by AMS MathViewer
- by José Bonet and Carmen Fernández
- Proc. Amer. Math. Soc. 123 (1995), 3717-3723
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277098-2
- PDF | Request permission
Abstract:
The behaviour of bounded sets is important in the theory of countable inductive limits of Fréchet spaces, the (LF)-spaces, and its applications. An (LF)-space is called regular if every bounded set is contained and bounded in one of the steps. In the present paper necessary conditions and sufficient conditions are given for the regularity of an (LF)-space. The conditions are expressed in terms of the behaviour of the neighbourhoods of the steps. It is proved that the conditions are equivalent for (LF)-spaces of sequences or of continuous functions.References
- Klaus D. Bierstedt, An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986) ICPAM Lecture Notes, World Sci. Publishing, Singapore, 1988, pp. 35–133. MR 979516, DOI 10.1007/s13116-009-0018-2
- Klaus D. Bierstedt and José Bonet, Weighted (LF)-spaces of continuous functions, Math. Nachr. 165 (1994), 25–48. MR 1261361, DOI 10.1002/mana.19941650104
- Klaus-D. Bierstedt, Reinhold Meise, and William H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), no. 1, 107–160. MR 656483, DOI 10.1090/S0002-9947-1982-0656483-9
- Klaus-D. Bierstedt, Reinhold G. Meise, and William H. Summers, Köthe sets and Köthe sequence spaces, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam-New York, 1982, pp. 27–91. MR 691159
- José Bonet and Susanne Dierolf, On LB-spaces of Moscatelli type, Doğa Mat. 13 (1989), no. 1, 9–33 (English, with Turkish summary). MR 1016649
- J. Bonet, S. Dierolf, and C. Fernández, On two classes of LF-spaces, Portugal. Math. 49 (1992), no. 1, 109–130. MR 1165925
- Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces $\scr F$ et $(\scr L\scr F)$, Ann. Inst. Fourier (Grenoble) 1 (1949), 61–101 (1950) (French). MR 38553
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Klaus Floret, Some aspects of the theory of locally convex inductive limits, Functional analysis: surveys and recent results, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn, 1979) North-Holland Math. Stud., vol. 38, North-Holland, Amsterdam-New York, 1980, pp. 205–237. MR 565407
- J. Kučera and K. McKennon, Bounded sets in inductive limits, Proc. Amer. Math. Soc. 69 (1978), no. 1, 62–64. MR 463937, DOI 10.1090/S0002-9939-1978-0463937-1
- J. Kučera and K. McKennon, Dieudonné-Schwartz theorem on bounded sets in inductive limits, Proc. Amer. Math. Soc. 78 (1980), no. 3, 366–368. MR 553378, DOI 10.1090/S0002-9939-1980-0553378-X
- J. Kučera and C. Bosch, Dieudonné-Schwartz theorem on bounded sets in inductive limits. II, Proc. Amer. Math. Soc. 86 (1982), no. 3, 392–394. MR 671201, DOI 10.1090/S0002-9939-1982-0671201-1
- Y. Meléndez, On general $LF$-spaces of Moscatelli type, Doğa Mat. 15 (1991), no. 3, 172–192. MR 1136187
- Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- Jing Hui Qiu, Dieudonné-Schwartz theorem in inductive limits of metrizable spaces, Proc. Amer. Math. Soc. 92 (1984), no. 2, 255–257. MR 754714, DOI 10.1090/S0002-9939-1984-0754714-5
- Jing Hui Qiu, Dieudonné-Schwartz theorem in inductive limits of metrizable spaces. II, Proc. Amer. Math. Soc. 108 (1990), no. 1, 171–175. MR 994779, DOI 10.1090/S0002-9939-1990-0994779-1
- Dietmar Vogt, Regularity properties of (LF)-spaces, Progress in functional analysis (Peñíscola, 1990) North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam, 1992, pp. 57–84. MR 1150738, DOI 10.1016/S0304-0208(08)70311-6
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3717-3723
- MSC: Primary 46A13
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277098-2
- MathSciNet review: 1277098