Riemannian metrics with large first eigenvalue on forms of degree $p$
HTML articles powered by AMS MathViewer
- by G. Gentile and V. Pagliara
- Proc. Amer. Math. Soc. 123 (1995), 3855-3858
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277111-2
- PDF | Request permission
Abstract:
Let (M, g) be a compact, connected, ${C^\infty }$ Riemannian manifold of n dimensions. Denote by ${\lambda _{1,p}}(M,g)$ the first nonzero eigenvalue of the Laplace operator acting on differential forms of degree p. We prove that for $n \geq 4$ and $2 \leq p \leq n - 2$, there exists a family of metrics ${g_t}$ of volume one, such that ${\lambda _{1,p}}(M,{g_t}) \to \infty$ as $t \to \infty$.References
- M. Berger, Sur les premières valeurs propres des variétés riemanniennes, Compositio Math. 26 (1973), 129–149 (French). MR 316913
- David D. Bleecker, The spectrum of a Riemannian manifold with a unit Killing vector field, Trans. Amer. Math. Soc. 275 (1983), no. 1, 409–416. MR 678360, DOI 10.1090/S0002-9947-1983-0678360-0
- B. Colbois and J. Dodziuk, Riemannian metrics with large $\lambda _1$, Proc. Amer. Math. Soc. 122 (1994), no. 3, 905–906. MR 1213857, DOI 10.1090/S0002-9939-1994-1213857-9
- Joseph Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1645–A1648 (French). MR 292357
- Jeffrey McGowan, The $p$-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann. 297 (1993), no. 4, 725–745. MR 1245416, DOI 10.1007/BF01459527 S. Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectral Riemannian Manifolds, Kaigai, Kyoto, 1983, pp. 115-128.
- Hajime Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), no. 1, 209–226. MR 519046, DOI 10.2969/jmsj/03110209 Y. Xu, Diverging eigenvalues and collapsing Riemannian metrics, Institute for Advanced Study, October 1992.
- Paul C. Yang and Shing Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55–63. MR 577325
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3855-3858
- MSC: Primary 58G25; Secondary 35P15, 53C20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277111-2
- MathSciNet review: 1277111