Modules with semi-local endomorphism ring
HTML articles powered by AMS MathViewer
- by Dolors Herbera and Ahmad Shamsuddin
- Proc. Amer. Math. Soc. 123 (1995), 3593-3600
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277114-8
- PDF | Request permission
Abstract:
We use the concept of dual Goldie dimension and a characterization of semi-local rings due to Camps and Dicks (1993) to find some classes of modules with semi-local endomorphism ring. We deduce that linearly compact modules have semi-local endomorphism ring, cancel from direct sums and satisfy the n th root uniqueness property. We also deduce that modules over commutative rings satisfying $AB{5^ \ast }$ also cancel from direct sums and satisfy the n th root uniqueness property.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- H. Bass, $K$-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 5–60. MR 174604
- Rosa Camps and Warren Dicks, On semilocal rings, Israel J. Math. 81 (1993), no. 1-2, 203–211. MR 1231187, DOI 10.1007/BF02761306
- Rosa Camps and Pere Menal, Power cancellation for Artinian modules, Comm. Algebra 19 (1991), no. 7, 2081–2095. MR 1121122, DOI 10.1080/00927879108824246
- Friedrich Dischinger, Sur les anneaux fortement $\pi$-réguliers, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 8, Aii, A571–A573 (French, with English summary). MR 422330
- E. Graham Evans Jr., Krull-Schmidt and cancellation over local rings, Pacific J. Math. 46 (1973), 115–121. MR 323815
- Alberto Facchini, Dolors Herbera, Lawrence S. Levy, and Peter Vámos, Krull-Schmidt fails for Artinian modules, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3587–3592. MR 1277109, DOI 10.1090/S0002-9939-1995-1277109-4
- L. Fuchs, Torsion preradicals and ascending Loewy series of modules, J. Reine Angew. Math. 239(240) (1969), 169–179. MR 285565, DOI 10.1515/crll.1969.239-240.169
- K. R. Goodearl, Surjective endomorphisms of finitely generated modules, Comm. Algebra 15 (1987), no. 3, 589–609. MR 882800, DOI 10.1080/00927878708823433
- Azmi Hanna and Ahmad Shamsuddin, Duality in the category of modules, Algebra Berichte [Algebra Reports], vol. 49, Verlag Reinhard Fischer, Munich, 1984. Applications. MR 772927
- C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93 (1985), no. 2, 253–266. MR 786753, DOI 10.1016/0021-8693(85)90159-0
- Christian U. Jensen and Helmut Lenzing, Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science Publishers, New York, 1989. MR 1057608
- Benoît Lemonnier, $\textrm {AB}5^{\ast }$ et la dualité de Morita, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 2, A47–A50 (French, with English summary). MR 549063
- Horst Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 241–267 (German). MR 69811, DOI 10.1007/BF01180634
- Claudia Menini, Jacobson’s conjecture, Morita duality and related questions, J. Algebra 103 (1986), no. 2, 638–655. MR 864434, DOI 10.1016/0021-8693(86)90157-2
- Saad H. Mohamed and Bruno J. Müller, Continuous and discrete modules, London Mathematical Society Lecture Note Series, vol. 147, Cambridge University Press, Cambridge, 1990. MR 1084376, DOI 10.1017/CBO9780511600692
- Bruno J. Müller, On Morita duality, Canadian J. Math. 21 (1969), 1338–1347. MR 255597, DOI 10.4153/CJM-1969-147-7
- Bruno J. Müller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60–66. MR 263875, DOI 10.1016/0021-8693(70)90040-2
- F. L. Sandomierski, Linearly compact modules and local Morita duality, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 333–346. MR 0344288
- K. Varadarajan, Dual Goldie dimension, Comm. Algebra 7 (1979), no. 6, 565–610. MR 524269, DOI 10.1080/00927877908822364
- Roger Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233–256. MR 274511, DOI 10.1090/S0002-9947-1971-0274511-2
- Weimin Xue, Rings with Morita duality, Lecture Notes in Mathematics, vol. 1523, Springer-Verlag, Berlin, 1992. MR 1184837, DOI 10.1007/BFb0089071
- Daniel Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79–90. MR 51832, DOI 10.2307/2372616
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3593-3600
- MSC: Primary 16L30; Secondary 16P60
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277114-8
- MathSciNet review: 1277114