THE BEREZIN SYMBOL AND MULTIPLIERS
OF FUNCTIONAL HILBERT SPACES

SEMRA KILIÇ

(Communicated by Palle E. T. Jorgensen)

Abstract. This paper focuses on a multiplicative property of the Berezin symbol \(\tilde{A} \), of a given linear map \(A : \mathcal{H} \rightarrow \mathcal{H} \), where \(\mathcal{H} \) is a functional Hilbert space of analytic functions. We show \(\tilde{AB} = \tilde{A}B \) for all \(B \) in \(\mathfrak{B}(\mathcal{H}) \) if and only if \(A \) is a multiplication operator \(M_\varphi \), where \(\varphi \) is a multiplier. We also present a version of this result for vector-valued functional Hilbert spaces.

1. INTRODUCTION

Let \(n \) be a fixed positive integer and let \(\Omega \) be a region in \(\mathbb{C}^n \). A functional Hilbert space \(\mathcal{H} \) is a Hilbert space of analytic functions on \(\Omega \) such that the point evaluations are bounded, linear functionals. By the Riesz-representation theorem there exists, for each \(z \) in \(\Omega \), a unique element \(K_z \) of \(\mathcal{H} \) such that \(f(z) = \langle f, K_z \rangle \) for all \(f \) in \(\mathcal{H} \). The function \(K \) on \(\Omega \times \Omega \), defined by \(K(z, w) = K_w(z) \), is called the reproducing kernel function of \(\mathcal{H} \). Let \(k_z = K_z/\|K_z\| \) be the normalized reproducing kernel function. For a given linear map \(A : \mathcal{H} \rightarrow \mathcal{H} \), the Berezin symbol \(\tilde{A} \) (see [1]) of a map \(A \) of \(\mathcal{H} \) into itself is defined by

\[\tilde{A}(z) = \langle Ak_z, k_z \rangle. \]

It is known that the map \(A \mapsto \tilde{A} \) is injective (see [3]). A function \(\varphi \) defined on \(\Omega \) is a multiplier of \(\mathcal{H} \) if \(\varphi \cdot f \) is in \(\mathcal{H} \), for all \(f \) in \(\mathcal{H} \). Let \(\mathfrak{B}(\mathcal{H}) \) denote the set of all bounded, linear operators from \(\mathcal{H} \) into \(\mathcal{H} \). The multiplication operator \(M_\varphi : \mathcal{H} \rightarrow \mathcal{H} \) defined by \(M_\varphi f = \varphi \cdot f \) is in \(\mathfrak{B}(\mathcal{H}) \), when \(\varphi \) is a multiplier of \(\mathcal{H} \).

2. THE MULTIPLICATIVE PROPERTY OF THE BEREZIN SYMBOL
ON A FUNCTIONAL HILBERT SPACE

Theorem 1. Let \(A \) be a bounded operator on \(\mathcal{H} \). Then

\[\tilde{AB}(z) = \tilde{A}(z)\tilde{B}(z) \]

Received by the editors November 22, 1993 and, in revised form, March 18, 1994 and May 12, 1994; the contents of this paper were presented to the AMS at a Special Session of the meeting in Dayton, Ohio, October 1992.

1991 Mathematics Subject Classification. Primary 46E22; Secondary 47B35, 47B38.

Key words and phrases. Berezin symbol, multiplier, functional Hilbert spaces, multiplication operators, Toeplitz operators.
for all B in $\mathcal{B}(H)$ if and only if A is a multiplication operator, M_φ, where φ is a multiplier. Moreover, $\varphi = \tilde{\varphi}$.

Before proceeding with the proof, we need the following:

Lemma 1. When φ is a multiplier of H, $\widetilde{M_\varphi}(z) = \varphi(z)$.

Proof. $\widetilde{M_\varphi}(z) = (M_\varphi k_z, k_z) = (\varphi k_z, k_z) = \varphi(z)$.

Lemma 2. The Berezin symbol of $f \otimes g$, for f, g in H, is

$$(f \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} f(z), \quad z \in \Omega.$$

Proof. For f and g in H and z in Ω,

$$(f \otimes g)(z) = \frac{(f \otimes g) K_z K_z}{\|K_z\|^2} = \frac{1}{\|K_z\|^2} (K_z, g)(f, K_z).$$

By the reproducing property of the kernel function, we have

$$(f \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} f(z), \quad f, g \in H.$$

Proof of Theorem 1. Suppose $\widetilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$ for all B in $\mathcal{B}(H)$. Let $B = f \otimes g$ for f and g in H. Then, by Lemma 2,

$$\widetilde{AB}(z) = (Af \otimes g)(z) = \frac{g(z)}{\|K_z\|^2} (Af)(z).$$

By the hypothesis, we have

$$\left(\frac{g(z)}{\|K_z\|^2} (Af)(z) = \frac{g(z)}{\|K_z\|^2} \tilde{A}(z)f(z),$$

which reduces to

$$(Af)(z) = \tilde{A}(z)f(z)$$

for all f in H. Hence $A = M_{\tilde{\varphi}}$.

Conversely, if A is a multiplication operator, M_φ, where φ is a multiplier,

$$\widetilde{M_\varphi B} = (M_\varphi Bk_z, k_z) = \varphi(z)\frac{(Bk_z)(z)}{\|K_z\|}$$

for all B in $\mathcal{B}(H)$. By Lemma 1, we have

$$\widetilde{M_\varphi B}(z) = \widetilde{M_\varphi}(z)\tilde{B}(z)$$

for all B in $\mathcal{B}(H)$.

Corollary 1. Let B be in $\mathcal{B}(H)$. Then

$$\widetilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$$

for all A in $\mathcal{B}(H)$ if and only if $B = M_{\psi}^*$, where ψ is a multiplier.

Proof. The assertion follows from Theorem 1 and the fact that $\widetilde{T^*}(z) = \widetilde{\tilde{T}}(z)$, for all T in $\mathcal{B}(H)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The Hardy space H^2 consists of the complex-valued analytic functions on the unit disk D such that the Taylor coefficients are square summable. A calculation shows that $K_z = \frac{1}{1 - z\overline{w}}$ has the reproducing property (see [4]). Let P denote the orthogonal projection of $L^2(\partial D)$ onto H^2, and let φ be a bounded measurable function. Then the Toeplitz operator, T_φ, induced by φ is defined by $T_\varphi f = P(\varphi f)$, for all f in H^2.

Corollary 2. Let A be a bounded operator on H^2. Then

$$\widetilde{AB}(z) = \tilde{A}(z)\tilde{B}(z)$$

for all B in $\mathcal{B}(H^2)$ if and only if A is a Toeplitz operator, T_φ, induced by φ in H^∞. Moreover $\varphi = \tilde{A}$.

Proof. The multiplication operators on H^2 are the analytic Toeplitz operators.

We should mention that Corollary 2 is also true if one replaces H^2 by the Bergman space or any of the weighted Bergman spaces. (For analytic Toeplitz operators on weighted Bergman spaces see [6].)

3. **The multiplicative property of the Berezin symbol on the analytic reproducing kernel space, $\mathcal{H} = \mathcal{H}_0 \otimes \mathcal{E}$**

Let \mathcal{H}_0 be a functional Hilbert space of (scalar-valued) analytic functions on Ω with the reproducing kernel function K_z, for each fixed z in Ω. Let \mathcal{E} be a separable Hilbert space, and let \mathcal{H} be the functional Hilbert space of \mathcal{E}-valued functions, $\mathcal{H} = \mathcal{H}_0 \otimes \mathcal{E}$. The reproducing kernel function of \mathcal{H}, $J_z : \mathcal{E} \mapsto \mathcal{H}$, is defined by $J_z(u) = K_z \otimes u$, where u is in \mathcal{E}.

The evaluation functional $E_z : \mathcal{H} \mapsto \mathcal{E}$, defined by $E_z f = f(z)$, for z in Ω, is bounded (see [2], Lemma 3.2). For $f \in \mathcal{H}$, u in \mathcal{E}, we have

$$\langle f, E_z^* u \rangle_{\mathcal{H}} = \langle f(z), u \rangle_{\mathcal{E}}.$$

We also have the reproducing property of the kernel function, that is

$$\langle f, J_z(u) \rangle_{\mathcal{H}} = \langle f(z), u \rangle_{\mathcal{E}}.$$

Therefore, $E_z^* u = J_z(u)$, for all u in \mathcal{E}. By the reproducing property of the kernel function, we have $\|J_z(u)\|^2 = K_z(z)\|u\|^2$, where u is in \mathcal{E}, and hence

$$\|J_z\| = \sqrt{K_z(z)} = \|E_z\|.$$

Let $H_z = \frac{1}{\|J_z\|}$ be the normalized reproducing kernel function, and let A be a bounded linear operator on \mathcal{H}. Then the Berezin symbol \widetilde{A} of A is defined by

$$\widetilde{A}(z) = H_z^* A H_z.$$

Lemma 3. An operator A is a multiplication operator if and only if, for each fixed z in Ω, $A^* E_z^* = E_z^* \Phi(z)^* \Phi(z)$ for some operator $\Phi(z)$ in $\mathcal{B}(\mathcal{E})$. Moreover, in this case, A is the operator of multiplication by the function $z \mapsto \Phi(z)$.

Proof. Let z be fixed in Ω. Suppose A is a multiplication operator, M_Φ, induced by $\Phi : \Omega \mapsto \mathcal{B}(\mathcal{E})$. We observe that

$$E_z M_\Phi f = M_\Phi f(z) = \Phi(z) f(z) = \Phi(z) E_z f$$

for all f in \mathcal{H}.

Then we have $E_z M_\Phi = \Phi(z) E_z$, for some operator $\Phi(z)$ in $\mathcal{B}(\mathcal{E})$.

Conversely, let A be a bounded operator on \mathcal{H} such that $A^*E_z^* = E_z^*\Phi(z)^*$ for some operator $\Phi(z)$ in $\mathcal{B}(\mathcal{H})$. For u in \mathcal{B}, we have

$$\langle f, A^*E_z^*u \rangle_{\mathcal{H}} = \langle Af, E_z^*u \rangle_{\mathcal{H}} = \langle (Af)(z), u \rangle_{\mathcal{H}}$$

for all f in \mathcal{H}. On the other hand, for u in \mathcal{B}, we have $\langle f, E_z^*\Phi(z)^*u \rangle = \langle \Phi(z)f(z), u \rangle$, for all f in \mathcal{H}. Then $\langle (Af)(z), u \rangle = \langle \Phi(z)f(z), u \rangle$, for all f in \mathcal{H} and u in \mathcal{B}. Therefore, $(Af)(z) = \Phi(z)f(z)$, for all f in \mathcal{H}.

Theorem 2. Let A be a bounded operator on \mathcal{H}. Then

$$\overline{AB}(z) = \overline{A(z)B(z)}$$

for all B in $\mathcal{B}(\mathcal{H})$ if and only if $A = M_{\Phi}$, where $\Phi: \Omega \mapsto \mathcal{B}(\mathcal{H})$.

Proof. We observe that $E_zM_{\Phi}f = \Phi(z)f(z)$, for all f in \mathcal{H}. Then $E_zM_{\Phi}E_z^* = \Phi(z)E_zE_z^*$ and $E_zM_{\Phi}BE_z^* = \Phi(z)E_zBE_z^*$, for all B in $\mathcal{B}(\mathcal{H})$. Since $E_zE_z^* = K_z(z)I_{\mathcal{B}}$, we have $M_{\Phi} = \Phi(z)$ and

$$\overline{M_{\Phi}B(z)} = \overline{\Phi(z)E_zBE_z^*} = \overline{\Phi(z)}\overline{B(z)}$$

for all B in $\mathcal{B}(\mathcal{H})$.

Conversely, suppose that A is a bounded operator such that $\overline{AB}(z) = \overline{A(z)B(z)}$ for all B in $\mathcal{B}(\mathcal{H})$. Then from the definitions, we get

$$E_zA^*BE_z^* = \frac{1}{\|E_z\|^2}E_zAE_z^*E_zBE_z^*$$

for all B in $\mathcal{B}(\mathcal{H})$.

For u and v in \mathcal{B}, we have

$$\langle E_zA^*BE_z^*u, v \rangle = \left\langle \frac{E_zAE_z^*}{\|E_z\|^2}E_zBE_z^*u, v \right\rangle = \langle \overline{A(z)}E_zBE_z^*u, v \rangle.$$

Then we have

$$\langle BE_z^*u, A^*E_z^*v \rangle = \langle BE_z^*u, E_z^*\overline{A(z)}v \rangle.$$

For each fixed nonzero u, BE_z^*u runs through all vectors in \mathcal{H} as B runs through all elements of $\mathcal{B}(\mathcal{H})$. Thus we see that $A^*E_z^* = E_z^*\overline{A(z)}^*$, for all z in Ω. Therefore A is a multiplication operator, $M_{\overline{A}}$, by Lemma 3.

Let us note that if we take \mathcal{B} to be \mathcal{C} and define $\overline{\mathcal{H}} = K_z\otimes 1$, the sufficiency proof of Theorem 2 will also work for Theorem 1, the scalar-valued case.

Let $N = \{0, 1, 2, \ldots\}$ denote the set of nonnegative integers. The set N^n is partially ordered by setting $I = (i_1, i_2, \ldots, i_n) \succeq (j_1, j_2, \ldots, j_n) = J$ if and only if $i_k \geq j_k$ for $k = 1, 2, \ldots, n$. If $z = (z_1, z_2, \ldots, z_n)$ is in Ω, then we set $z^I = z_1^{i_1}z_2^{i_2}\cdots z_n^{i_n}$. We denote by $H^2(n) \otimes \mathcal{B}$, where $H^2(n) = H^2 \otimes H^2 \otimes \cdots \otimes H^2$ (n copies), the set of all vector-valued analytic functions $f: D^n \mapsto \mathcal{B}$ with power series expansion $f(z) = \sum_{I \in N^n} z^Iv_I$, with v_I in \mathcal{B} and z in D^n, such that $\sum_{I \in N^n} \|v_I\|_{\mathcal{B}}^2 < \infty$.

The space $H^2(n) \otimes \mathcal{B}$ is a Hilbert space with the reproducing kernel function, $K_z: \mathcal{B} \mapsto H^2(n) \otimes \mathcal{B}$, for z in D^n, defined by $K_z(u) = z^I \otimes u$, where u is in \mathcal{B} and $K_z(u) = \sum_{I \in N^n} z^Iw_I$ is the reproducing kernel function for $H^2(n)$ (see [5]). Let $H^\infty(n)(\mathcal{B}(\mathcal{H}))$ denote the Banach space of all bounded analytic functions $\Phi: D^n \mapsto \mathcal{B}(\mathcal{H})$ with the norm $\|\Phi\|_\infty = \sup\{\|\Phi(z)\|, \text{for } z \in D^n\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For every Φ in $H^\infty(n)(\mathcal{B}(\mathbb{C}))$, we can define the analytic Toeplitz operator T_Φ in $\mathcal{B}(H^2(n) \otimes \mathbb{C})$ as follows:

$$(T_\Phi f)(z) = \Phi(z)f(z), \quad z \in D^n, \ f \in H^2(n) \otimes \mathbb{C}.$$

For the boundedness of the map T_Φ see [2].

Corollary 3. Let A be a bounded operator on $H^2(n) \otimes \mathbb{C}$. Then

$$\hat{AB}(z) = \hat{A}(z)\hat{B}(z)$$

for all B in $\mathcal{B}(H^2(n) \otimes \mathbb{C})$ if and only if $A = T_\Phi$, where Φ is in $H^\infty(n)(\mathcal{B}(\mathbb{C}))$.

Acknowledgment

I thank my thesis advisor, Eric Nordgren, for his encouragement and support throughout my work. Also, I thank the referee for several helpful suggestions.

References

1. F. A. Berezin, *Covariant and contravariant symbols for operators*, Math. USSR-Izv. 6 (1972), 1117–1151.