Semi-Fredholm operators with finite ascent or descent and perturbations
HTML articles powered by AMS MathViewer
- by Vladimir Rakočević
- Proc. Amer. Math. Soc. 123 (1995), 3823-3825
- DOI: https://doi.org/10.1090/S0002-9939-1995-1286004-6
- PDF | Request permission
Abstract:
In this note we prove that the collection of upper (lower) semi-Fredholm operators with finite ascent (descent) is closed under commuting operator perturbations that belong to the perturbation class associated with the set of upper (lower) semi-Fredholm operators. Then, as a corollary we get the main result of S. Grabiner (Proc. Amer. Math. Soc. 71 (1978), 79-80).References
- S. R. Caradus, W. E. Pfaffenberger, and Bertram Yood, Calkin algebras and algebras of operators on Banach spaces, Lecture Notes in Pure and Applied Mathematics, Vol. 9, Marcel Dekker, Inc., New York, 1974. MR 0415345
- M. A. Gol′dman and S. N. Kračkovskiĭ, Behavior of the space of zeros with a finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 (1975), no. 13, 532–534 (Russian). MR 0477829
- Sandy Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), no. 1, 79–80. MR 495841, DOI 10.1090/S0002-9939-1978-0495841-7
- Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- Vladimir Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193–198. MR 848425, DOI 10.1017/S0017089500006509
- T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), no. 2, 137–146. MR 941708
- Jaroslav Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), no. 1, 57–62. MR 865103
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3823-3825
- MSC: Primary 47A53
- DOI: https://doi.org/10.1090/S0002-9939-1995-1286004-6
- MathSciNet review: 1286004