On the depth of blowup algebras of ideals with analytic deviation one
HTML articles powered by AMS MathViewer
- by Santiago Zarzuela
- Proc. Amer. Math. Soc. 123 (1995), 3639-3647
- DOI: https://doi.org/10.1090/S0002-9939-1995-1286012-5
- PDF | Request permission
Abstract:
Let I be an ideal in a local Cohen-Macaulay ring $(A,\mathfrak {m})$. Assume I to be generically a complete intersection of positive height. We compute the depth of the Rees algebra and the form ring of I when the analytic deviation of I equals one and its reduction number is also at most one. The formulas we obtain coincide with the already known formulas for almost complete intersection ideals.References
- P. Brumatti, A. Simis, and W. V. Vasconcelos, Normal Rees algebras, J. Algebra 112 (1988), no. 1, 26–48. MR 921962, DOI 10.1016/0021-8693(88)90130-5
- Markus Brodmann, Rees rings and form rings of almost complete intersections, Nagoya Math. J. 88 (1982), 1–16. MR 683240
- Shiro Goto and Yasuhiro Shimoda, On the Gorensteinness of Rees and form rings of almost complete intersections, Nagoya Math. J. 92 (1983), 69–88. MR 726141, DOI 10.1017/S0027763000020572
- Shiro Goto and Sam Huckaba, On graded rings associated to analytic deviation one ideals, Amer. J. Math. 116 (1994), no. 4, 905–919. MR 1287943, DOI 10.2307/2375005
- Shiro Goto and Yukio Nakamura, On the Gorensteinness of graded rings associated to ideals of analytic deviation one, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 51–72. MR 1266179, DOI 10.1090/conm/159/01504 —, Gorenstein graded rings associated to ideals of analytic deviation two, preprint.
- M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up, Springer-Verlag, Berlin, 1988. An algebraic study; With an appendix by B. Moonen. MR 954831, DOI 10.1007/978-3-642-61349-4
- M. Herrmann, B. Moonen, and O. Villamayor, Ideals of linear type and some variants, The Curves Seminar at Queen’s, Vol. VI (Kingston, ON, 1989) Queen’s Papers in Pure and Appl. Math., vol. 83, Queen’s Univ., Kingston, ON, 1989, pp. Exp. No. H, 37. MR 1036038
- M. Herrmann, J. Ribbe, and S. Zarzuela, On Rees and form rings of almost complete intersections, Comm. Algebra 21 (1993), no. 2, 647–664. MR 1199696, DOI 10.1080/00927879308824586
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Algebra 74 (1982), no. 2, 466–493. MR 647249, DOI 10.1016/0021-8693(82)90034-5
- J. Herzog, A. Simis, and W. V. Vasconcelos, Approximation complexes of blowing-up rings. II, J. Algebra 82 (1983), no. 1, 53–83. MR 701036, DOI 10.1016/0021-8693(83)90173-4
- Lê Tuân Hoa and Santiago Zarzuela, Reduction number and $a$-invariant of good filtrations, Comm. Algebra 22 (1994), no. 14, 5635–5656. MR 1298739, DOI 10.1080/00927879408825151
- Sam Huckaba, Analytic spread modulo an element and symbolic Rees algebras, J. Algebra 128 (1990), no. 2, 306–320. MR 1036393, DOI 10.1016/0021-8693(90)90025-J
- Sam Huckaba and Craig Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 114 (1992), no. 2, 367–403. MR 1156570, DOI 10.2307/2374708
- Sam Huckaba and Craig Huneke, Rees algebras of ideals having small analytic deviation, Trans. Amer. Math. Soc. 339 (1993), no. 1, 373–402. MR 1123455, DOI 10.1090/S0002-9947-1993-1123455-7
- Sam Huckaba and Thomas Marley, Depth formulas for certain graded rings associated to an ideal, Nagoya Math. J. 133 (1994), 57–69. MR 1266362, DOI 10.1017/S0027763000004748
- Sunsook Noh and Wolmer V. Vasconcelos, The $S_2$-closure of a Rees algebra, Results Math. 23 (1993), no. 1-2, 149–162. MR 1205761, DOI 10.1007/BF03323133
- K. Raghavan, Powers of ideals generated by quadratic sequences, Trans. Amer. Math. Soc. 343 (1994), no. 2, 727–747. MR 1188639, DOI 10.1090/S0002-9947-1994-1188639-1 J. Ribbe, Thesis, Universitat zu Köln, 1991.
- Aron Simis, Bernd Ulrich, and Wolmer V. Vasconcelos, Cohen-Macaulay Rees algebras and degrees of polynomial relations, Math. Ann. 301 (1995), no. 3, 421–444. MR 1324518, DOI 10.1007/BF01446637
- Ngô Viêt Trung, Reduction number, $a$-invariant and Rees algebras of ideals having small analytic deviation, Commutative algebra (Trieste, 1992) World Sci. Publ., River Edge, NJ, 1994, pp. 245–262. MR 1421090
- Bernd Ulrich, Artin-Nagata properties and reductions of ideals, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 373–400. MR 1266194, DOI 10.1090/conm/159/01519
- Giuseppe Valla, A property of almost complete intersections, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 132, 487–492. MR 679817, DOI 10.1093/qmath/33.4.487
- Wolmer V. Vasconcelos, Hilbert functions, analytic spread, and Koszul homology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 401–422. MR 1266195, DOI 10.1090/conm/159/01520
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3639-3647
- MSC: Primary 13A30; Secondary 13C15, 13D45, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1286012-5
- MathSciNet review: 1286012