Compactness criteria for integral operators in $L^ \infty$ and $L^ 1$ spaces
HTML articles powered by AMS MathViewer
- by S. P. Eveson
- Proc. Amer. Math. Soc. 123 (1995), 3709-3716
- DOI: https://doi.org/10.1090/S0002-9939-1995-1291766-8
- PDF | Request permission
Abstract:
Let $(S,\Sigma ,\mu )$ be a positive measure space, $k:S \times S \to \mathbb {R}$ be a measurable function such that the kernel $|k|$ induces a bounded integral operator on ${L^\infty }(S,\Sigma ,\mu )$ (equivalently, that ${\text {ess}}.{\sup _{s \in S}}|k(s,t)|d\mu (t) < \infty$), and for $s \in S$ let ${k_s}(t) = k(s,t)$. We show that it is sufficient for the integral operator T induced by k on ${L^\infty }(S,\Sigma ,\mu )$ to be compact, that there exists a locally $\mu$-null set $N \in \Sigma$ such that the set $\{ {k_s}:s \in S\}$ is relatively compact in ${L^1}(S,\Sigma ,\mu )$, and that this condition is also necessary if $(S,\Sigma ,\mu )$ is separable. In the case of Lebesgue measure on a subset of ${\mathbb {R}^n}$, we use Riesz’s characterisation of compact sets in ${L^1}({\mathbb {R}^n})$ to provide a more tractable form of this criterion.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Barry M. Cherkas, Compactness in $L_{\infty }$ spaces, Proc. Amer. Math. Soc. 25 (1970), 347–350. MR 262811, DOI 10.1090/S0002-9939-1970-0262811-6
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR 0367121 M. Riesz, Sur les ensembles compacts de fonctions sommables, Acta Szeged Sect. Math. 6 (1933), 136-142.
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062 A. C. Zaanen, Linear analysis, North-Holland, Amsterdam, 1964.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3709-3716
- MSC: Primary 47B38; Secondary 47B07, 47G10
- DOI: https://doi.org/10.1090/S0002-9939-1995-1291766-8
- MathSciNet review: 1291766