Generalizations of semi-Fredholm operators
HTML articles powered by AMS MathViewer
- by Richard Bouldin
- Proc. Amer. Math. Soc. 123 (1995), 3757-3764
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301011-2
- PDF | Request permission
Abstract:
On nonseparable Hilbert spaces there are multiple sets of operators that are analogous to the semi-Fredholm operators on a separable space. We develop the properties of these sets and relate those properties to some recent research. We conclude with a theorem that indicates precisely how far one can go from a given generalized semi-Fredholm operator (or generalized Fredholm operator) and retain the property of generalized semi-Fredholmness (or generalized Fredholmness).References
- Constantin Apostol, Lawrence A. Fialkow, Domingo A. Herrero, and Dan Voiculescu, Approximation of Hilbert space operators. Vol. II, Research Notes in Mathematics, vol. 102, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 735080
- Richard Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), no. 4, 513–517. MR 620264, DOI 10.1512/iumj.1981.30.30042
- Richard Bouldin, Approximation by operators with fixed nullity, Proc. Amer. Math. Soc. 103 (1988), no. 1, 141–144. MR 938658, DOI 10.1090/S0002-9939-1988-0938658-5
- Richard Bouldin, The distance to operators with a fixed index, Acta Sci. Math. (Szeged) 54 (1990), no. 1-2, 139–143. MR 1073428
- Richard Bouldin, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), no. 3, 721–726. MR 1000147, DOI 10.1090/S0002-9939-1990-1000147-9
- Richard Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), no. 2, 167–178. MR 1220559, DOI 10.1017/S0017089500009721
- Richard Bouldin, Distance to invertible linear operators without separability, Proc. Amer. Math. Soc. 116 (1992), no. 2, 489–497. MR 1097336, DOI 10.1090/S0002-9939-1992-1097336-6
- Richard Bouldin, Largely singular operators, J. Math. Anal. Appl. 188 (1994), no. 1, 141–150. MR 1301722, DOI 10.1006/jmaa.1994.1417
- L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. Appl. (7) 10 (1990), no. 2, 209–238 (English, with Italian summary). MR 1076155
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971/72), 61–80. MR 417836, DOI 10.1512/iumj.1971.21.21005
- Robin Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), no. 2, 328–330. MR 870795, DOI 10.1090/S0002-9939-1987-0870795-5
- Domingo A. Herrero, Approximation of Hilbert space operators. Vol. I, Research Notes in Mathematics, vol. 72, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 676127
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3757-3764
- MSC: Primary 47A53; Secondary 47A05, 47A58
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301011-2
- MathSciNet review: 1301011