The $\sigma$-class generated by balls contains all Borel sets
HTML articles powered by AMS MathViewer
- by Vladimír Olejček
- Proc. Amer. Math. Soc. 123 (1995), 3665-3675
- DOI: https://doi.org/10.1090/S0002-9939-1995-1327035-7
- PDF | Request permission
Abstract:
The $\sigma$-class, i.e. the system of sets closed under complementation, countable disjoint unions and containing the empty set, generated by the system of open balls coincides with the $\sigma$-field of Borel sets in ${\mathbb {R}^3}$.References
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Stanley P. Gudder, Quantum probability spaces, Proc. Amer. Math. Soc. 21 (1969), 296–302. MR 243793, DOI 10.1090/S0002-9939-1969-0243793-1
- Tibor Neubrunn, A note on quantum probability spaces, Proc. Amer. Math. Soc. 25 (1970), 672–675. MR 259056, DOI 10.1090/S0002-9939-1970-0259056-2 V. Olejček, Generation of a q- $\sigma$-algebra in the plane, Proc. Conf. Topology and Measure V, Wissenshaftliche Beiträge der Ernst-Moritz-Arndt-Universität Greifswald, 1988, pp. 121-125.
- Pavel Pták and Sylvia Pulmannová, Kvantové logiky, VEDA, Vydavatel′stvo Slovenskej Akadémie Vied, Bratislava, 1989 (Slovak, with English and Russian summaries). MR 1176313
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 3665-3675
- MSC: Primary 28A05; Secondary 04A03
- DOI: https://doi.org/10.1090/S0002-9939-1995-1327035-7
- MathSciNet review: 1327035