On functions that are trivial cocycles for a set of irrationals. II
HTML articles powered by AMS MathViewer
- by Lawrence W. Baggett, Herbert A. Medina and Kathy D. Merrill
- Proc. Amer. Math. Soc. 124 (1996), 89-93
- DOI: https://doi.org/10.1090/S0002-9939-96-02990-5
- PDF | Request permission
Abstract:
Two results are obtained about the topological size of the set of irrationals for which a given function is a trivial cocycle. An example of a continuous function which is a coboundary with non-$L^1$ cobounding function is constructed.References
- Larry Baggett, On functions that are trivial cocycles for a set of irrationals, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1212–1215. MR 948145, DOI 10.1090/S0002-9939-1988-0948145-6
- Larry Baggett and Kathy Merrill, Representations of the Mautner group and cocycles of an irrational rotation, Michigan Math. J. 33 (1986), no. 2, 221–229. MR 837580, DOI 10.1307/mmj/1029003351
- L. Baggett and K. Merrill, Smooth cocycles for an irrational rotation, Israel J. Math. 79 (1992), no. 2-3, 281–288. MR 1248918, DOI 10.1007/BF02808220
- Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680, DOI 10.1007/BF02684798
- A. Iwanik, M. Lemańczyk, and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel J. Math. 83 (1993), no. 1-2, 73–95. MR 1239717, DOI 10.1007/BF02764637
- Herbert A. Medina, Spectral types of unitary operators arising from irrational rotations on the circle group, Michigan Math. J. 41 (1994), no. 1, 39–49. MR 1260607, DOI 10.1307/mmj/1029004913
Bibliographic Information
- Lawrence W. Baggett
- Email: baggett@euclid.colorado.edu
- Herbert A. Medina
- Email: hmedina@lmumail.lmu.edu
- Kathy D. Merrill
- Email: kmerrill@cc.colorado.edu
- Received by editor(s): November 15, 1993
- Received by editor(s) in revised form: June 21, 1994
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 89-93
- MSC (1991): Primary 28D05, 11K38
- DOI: https://doi.org/10.1090/S0002-9939-96-02990-5
- MathSciNet review: 1285971