On weak${}^*$ convergence in $H^1$
HTML articles powered by AMS MathViewer
- by Joseph A. Cima and Alec Matheson
- Proc. Amer. Math. Soc. 124 (1996), 161-163
- DOI: https://doi.org/10.1090/S0002-9939-96-02995-4
- PDF | Request permission
Abstract:
A bounded sequence of functions in $H^1$ which converges in measure on a set of positive measure of the unit circle converges weak${}^*$. An example is given to show that weak${}^*$ convergence cannot be replaced by weak convergence.References
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Peter W. Jones and Jean-Lin Journé, On weak convergence in $H^1(\textbf {R}^d)$, Proc. Amer. Math. Soc. 120 (1994), no. 1, 137–138. MR 1159172, DOI 10.1090/S0002-9939-1994-1159172-3 J. Khintchin, Sur les suites de fonctions analytiques bornées sur leur ensemble, Fund. Math. 4 (1923), 72–75. A. Ostrowski, Über die Bedeutung der Jensenschen Formel für einige Fragen der Komplexen Funktionentheorie, Acta Sci. Math. (Szeged) 1 (1922–1923), 80–87.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Haskell P. Rosenthal, The Banach spaces $C(K)$ and $L^{p}(\mu )$, Bull. Amer. Math. Soc. 81 (1975), no. 5, 763–781. MR 380381, DOI 10.1090/S0002-9904-1975-13824-9
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- Joseph A. Cima
- MR Author ID: 49485
- Email: cima@math.unc.edu
- Alec Matheson
- Email: matheson@math.lamar.edu
- Communicated by: \commby Dale Alspach
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 161-163
- MSC (1991): Primary 42B30; Secondary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-96-02995-4
- MathSciNet review: 1285983