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ABSTRACT. For every n > 3, we construct an n-dimensional Banach space
which is isometric to a subspace of L;,o but is not isometric to a subspace of
L1. The isomorphic version of this problem (posed by S. Kwapien in 1969) is
still open. Another example gives a Banach subspace of L;,4 which does not
embed isometrically in L, /5. Note that, from the isomorphic point of view, all
the spaces Lq with ¢ < 1 have the same Banach subspaces.

1. INTRODUCTION

A well-known fact is that the space L is isometric to a subspace of L, for every
g < 1. It is natural to ask whether the spaces L, with ¢ < 1 contain any Banach
space structure not generated by Lj. This question was first formulated in 1969 by
Kwapien [6] in the following form: Need every Banach subspace of Lg be also a
subspace of L;? Later the question was mentioned by Maurey [8, Question 124].

In 1970, Nikishin [9] proved that every Banach subspace of Ly is isomorphic to a
subspace of L, for every ¢ < 1. Therefore, if we replace the space Ly in Kwapien’s
question by any of the spaces L, with ¢ < 1 we get an equivalent question.

Since all the spaces L, with ¢ < 1 embed in Lg, Nikishin’s result also shows
that these spaces are all the same from the isomorphic Banach space point of view.
Namely, every Banach space which is isomorphic to a subspace of L, with ¢ < 1 is
also isomorphic to a subspace of L,, for every other p < 1.

In this paper we show that the answer to the isometric version of Kwapien’s
question is negative. For every n € N, n > 3, there exists an n-dimensional
Banach space which is isometric to a subspace of L;/, but is not isometric to a
subspace of L;. Using this example it is easy to see that the spaces L, with ¢ < 1
may be different from the isometric Banach space point of view. We give, however,
a direct example illustrating the difference by constructing a Banach subspace of
Ly/4 which does not embed isometrically in L 5.

The isomorphic version of Kwapien’s question is still open. The most recent
related result seems to be a theorem of Kalton [2], who proved that a Banach space
X embeds in Ly if and only if ¢;(X) embeds in Lg.

The isometric version of Kwapien’s question can be reformulated in the language
of positive definite functions. In fact, a Banach space (X, | - ||) is isometric to a
subspace of L, with 0 < p < 2 if and only if the function exp(—||x||?) is positive
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definite [1]. The main example of this paper gives a norm such that the function
exp(—||z|*/?) is positive definite but the function exp(—||z||) is not positive definite.
This result is close to problems of Schoenberg’s type (see [4]).

In this article, we consider real Banach spaces only.

2. THE IDEA OF THE CONSTRUCTION

Let f be an infinitely differentiable even function on the unit sphere S, in R"™.
We spoil the Euclidean norm ||z||2 in R™ by means of the function f. Namely, for
A > 0 consider the function
x

]l

(1) MNa(@) = [Jz|2(1 + Af( ), z € R™

One can choose A small enough so that A is a norm in R™. This follows from
a simple one-dimensional consideration: if a,b € R, ¢ is a convex function on [a, b]
with ¢” > 6 > 0 on [a,b] and h € C?[a,b], then the functions g + Ah have positive
second derivatives on [a, b] for sufficiently small X’s and, hence, are convex on [a, b].

Let Ay =sup{\ > 0: MN; is a norm in R"™ for every ¢t < A}. For each A < Ay, we
denote by X, the Banach space with the norm ||z||x = Ny (z).

Theorem 2 from the paper [5] shows that, for every ¢ > 0 which is not an even
integer, there exists a small enough number A such that the space X, is isometric
to a subspace of L, for every ¢ < A. This fact was used in [5] to prove that for every
compact subset @ of (0,00)\ {2k, k € N} there exists a Banach space different from
Hilbert spaces which is isometric to a subspace of L, for every ¢ € Q.

For ¢ € (0,1], let Ay, = sup{\ > 0 : X, is isometric to a subspace of L, for
every t < A}. If 0 < ¢ < p < 2, then the space L, is isometric to a subspace of Ly;
therefore, A\, < Aq. In particular, A\; < A4 for every ¢ < 1. Clearly, A\ < Ay.

Now we can explain the idea of getting a Banach subspace of L, with ¢ < 1
which is not isometric to a subspace of L;. Suppose we can find a function f so
that Ay is strictly less than Ay, and also A; is strictly less than A,. Then, for every
A € (A1, min(Af, Ag)], the space X is a Banach space with the desired property.

Similarly, for ¢ < p < 1, if we manage to find a function f so that A, < A, and
Ap < Ay we get an example of a Banach space which embeds isometrically in L,
but does not embed in L.

The construction in [5] is based on the use of spherical harmonics and, in general,
does not give a chance to calculate the numbers A, exactly. We are, however, able
to choose a function f for which it is possible to calculate the numbers ), for certain
values of ¢. Our calculations do not depend on the results from [5] mentioned above,
so the paper [5] only shows a direction for constructing examples.

We shall use one simple characterization of finite-dimensional subspaces of L.

Proposition 1. Let g be a positive number which is not an even integer, let
(X, - 1) be an n-dimensional Banach space, and suppose there exists a contin-
wous function b on the sphere S, in R™ such that, for every r € R™,

@) ]t = /S (2, £)[7 bE) de

where (x,£) stands for the scalar product in R™.
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Then X is isometric to a subspace of Ly if and only if b is a non-negative (not
identically zero) function.

Proof. If b is a non-negative function we can assume without loss of generality
that [, g, b(€) d§¢ = 1. Choose any measurable (with respect to Lebesgue measure)
functions f1,..., f, on [0,1] having the joint distribution b(§)d¢. Then, by (2), the
operator z — »_x;f;, © € R™, is an isometry from X to L,([0, 1]).

Conversely, if X is a subspace of Lg([0,1]) choose any functions fi,..., fn
€ L4 which form a basis in X, and let p be the joint distribution of the functions
fi, ..., fn, with respect to Lebesgue measure. Then, for every z € R",

n 1 n
2= 11> aefull”= [ > anfe(t)|?dt
— [ Il aue) = [l ane

n

where v is the projection of p to the sphere. (For every Borel subset A of S,
v(A) = f{tA teR) lz||3dp(x).) It follows from (2) that

/ (2, £)[7 b(E) de = / (&, €)[7 dv(€)
Sn Sn

for every x € R™. Since ¢ is not an even integer, we can apply the uniqueness
theorem for measures on the sphere from [3] to show that dv(§) = b(§) d€, which
means that b(§) d€ is a measure and the function b is non-negative. O

The representation (2) exists for every smooth enough function on the sphere
(see, for example, Theorem 1 from [5]). We are going to choose special smooth
norms for which it is possible to calculate the function b exactly and then check if
b is non-negative. In this way we calculate the numbers ), for these norms.

We need the representation (2) for some simple functions on the sphere.

Lemma 1. For every x = (x1,...,x,) from the unit sphere S, in R™ and every
q > 0 we have

2 _ L'((n+4q)/2) q"ta. 1
Therefore,
@) = st . O (Cn+ 1k -2) de
and
(5) Th = w [S |, I((n + 1§ = 1) de.
Besides,

©) o= [ 101 (4 30+ DL+ 6+ D - 3) s

n
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Proof. 1t is a well-known simple fact (see, for example, [7]) that for every x € R"
and every k > 0,

2 2 I'((n 4 2k)/2) 2
M ) = e e Ll e

Differentiate both sides of (7) by x,, twice, and then use the fact that z € S,, to get

1+ (2k — 2)22 = (2k — 1)%(”?1()(2;((222/?1)/2) / |(z, &)1 72¢7 de.

n

Use (7) with the exponent 2k — 2 instead of 2k to get

, 1 . L((n+2k)/2)
(2k — 2)22 = 27r("—_1)/2/5 (2, &) ((2k— 1)mfn

’ T((n+ 2k —2)/2)
O D((2k—1)/2) )dé'

Now use the fact that I'(z + 1) = 2T'(z) and put 2k — 2 = ¢ to get (3).

To prove (6), differentiate both sides of (7) four times by z, (remember that
22 + .-+ 22 = 1; do not factor the second and the third derivatives!), and then
put k=5/2:

AT ((n+5)/2)
27r("——1)/2/5 (2,9, d.

n

—2t 4622 +3=

Now use (5), (7) with k = 1/2, and the fact that T'(z + 1) = zI'(z) to get (6). O
3. EXAMPLES
For every A > 0 define a function N) on R" by

i+ 42y — 222
N (2. 21/2(1 2\ n—1 n
Az) = (27 + +7,) + «T%‘f"'"i_x%

2
),xER".

Lemma 2. N, is a convex function if and only if A < 1—11

Proof. The function N} is convex if and only if the following function of two vari-
ables is convex:
x? — 292 ) 2
2 +y2 /)
Calculating the second derivatives of the function g we get
%g 0%g 0%g
2 2
— +2ab—— +b"—
i +aa Oxdy + Oy>
= (2* + )" (ay — bx)?

(21— 100 — 110%) + 2%5(2 — 20 + 10402) + y* (1 + 8A — 20)%)).

gla,y) = @ +y)Y2 (14

The function g is convex if and only if the latter expression is non-negative for
every choice of a, b, z,y. Clearly, it happens if and only if T3 <\ < . O

For A < ﬁ denote by X the Banach space with the norm Ay.
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Theorem 1. Letn > 3. If

(18n2—218n)1/2—3n+1<)\§ 1 7
In? —12n—1 6n —4

Qy =

then the Banach space X is isometric to a subspace of L1,y and, at the same time,
X s not isometric to a subspace of L.

Proof. Let us first prove that the space X, is isometric to a subspace of L;; if
and only if A < . For every z € S,, use (4) and (7) with k = 1/4 to get the
representation (2) (with ¢ = 1/2) for the norm N} :

NP (@) =14 A1 - 322)
_ T((2n+1)/4)

= Sxn D720 (3/4) / (2, OF2(1+7A = (6n.+ 3)AE) d.

n

Clearly, the function b(¢£) = 147X — (6n + 3)Aé2 is non-negative on S, if and only
if A < =1, and the fact we need follows from Proposition 1.

Let us show that X is isometric to a subspace of L; if and only if A < «,. If
x € Sy, then Ny(z) =1+ 2X(1 — 322) + A2(1 — 622 + 9z2). We use (5), (6) and
(7) with k = 1/2 to get the representation (2) for Ny (z) with ¢g=1:

Na(2) = T((n + 1)/2) / (2.€)] b(E2) de

n

where
b(€2) = (148X — 200%) + €2 (n + 1)(482% — 6)) — 962 (n + 3)(n + 1)A\%

The function b is a quadratic function of &2 with negative first coefficient. By
Proposition 1, the space X embeds in L; if and only if b is non-negative for every
&2 € [0,1]. Clearly, it happens if and only if both numbers b(0) = 1 + 8\ — 20\?
and b(1) = 1+ A\(2—6n) + A\2(1 + 12n — 9n?) are non-negative. Since 1+ 12n — 9n?
is a negative number for every n > 2 and we consider only positive numbers J, it
is clear that the condition is that A < «,,. To prove the theorem, it suffices to note

that, for every n > 3, ﬁ is less than ﬁ and a, < —6n1_2 < —6n1_4, O

Remarks. 1. Since every two-dimensional Banach space is isometric to a subspace
of Ly, it is impossible to construct a two-dimensional space with the property of
Theorem 1. In our example, ag = ﬁ, which coincides with the bound from Lemma
2.

2. The author is unable to apply the scheme from Section 2 to every ¢ < 1,
although it is very likely the same idea works. For instance, getting an example
for ¢ = 3/4 is a matter of calculating the eighth derivative of the function
(234 +a2)k.

Theorem 1 shows also that the spaces L, with ¢ < 1 may have different Banach
subspaces. The Banach subspaces of L;,; constructed in Theorem 1 cannot be
isometric to subspaces of L, for all ¢ < 1. In fact, if a Banach space (X, || - |) is
isometric to a subspace of L, for every ¢ < 1, then, by a theorem from [1], the
function exp(—||x||?) is positive definite for every ¢ < 1. The function exp(—|z||)
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is then positive definite as a pointwise limit of positive definite functions, and the
space X (by the same result from [1]) is isometric to a subspace of L.

On the other hand, we can show the difference directly. For every A > 0 define
a function Ay on R? by

23 + 23 — 223

N, (2 .2 21/2(1 A
A(x) = (2] + 25 + 23) + 2l tal

4
),xERB.

The proof of the following theorem is similar to the proofs of Lemma 2 and
Theorem 1.

Theorem 2. The function Ny is a norm if and only if A < % The corresponding
Banach space X is isometric to a subspace of Ly,4 if and only if X < L and X

26"
is not isometric to a subspace of Ly if A > %. Thus, for % < A < 2, the space

26"
X\ is a Banach subspace of Ly,4 which does not embed isometrically in Ly ;.
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