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Abstract. For every n ≥ 3, we construct an n-dimensional Banach space
which is isometric to a subspace of L1/2 but is not isometric to a subspace of

L1. The isomorphic version of this problem (posed by S. Kwapien in 1969) is
still open. Another example gives a Banach subspace of L1/4 which does not
embed isometrically in L1/2. Note that, from the isomorphic point of view, all
the spaces Lq with q < 1 have the same Banach subspaces.

1. Introduction

A well-known fact is that the space L1 is isometric to a subspace of Lq for every
q < 1. It is natural to ask whether the spaces Lq with q < 1 contain any Banach
space structure not generated by L1. This question was first formulated in 1969 by
Kwapien [6] in the following form: Need every Banach subspace of L0 be also a
subspace of L1? Later the question was mentioned by Maurey [8, Question 124].

In 1970, Nikishin [9] proved that every Banach subspace of L0 is isomorphic to a
subspace of Lq for every q < 1. Therefore, if we replace the space L0 in Kwapien’s
question by any of the spaces Lq with q < 1 we get an equivalent question.

Since all the spaces Lq with q < 1 embed in L0, Nikishin’s result also shows
that these spaces are all the same from the isomorphic Banach space point of view.
Namely, every Banach space which is isomorphic to a subspace of Lq with q < 1 is
also isomorphic to a subspace of Lp for every other p < 1.

In this paper we show that the answer to the isometric version of Kwapien’s
question is negative. For every n ∈ N, n ≥ 3, there exists an n-dimensional
Banach space which is isometric to a subspace of L1/2 but is not isometric to a
subspace of L1. Using this example it is easy to see that the spaces Lq with q < 1
may be different from the isometric Banach space point of view. We give, however,
a direct example illustrating the difference by constructing a Banach subspace of
L1/4 which does not embed isometrically in L1/2.

The isomorphic version of Kwapien’s question is still open. The most recent
related result seems to be a theorem of Kalton [2], who proved that a Banach space
X embeds in L1 if and only if `1(X) embeds in L0.

The isometric version of Kwapien’s question can be reformulated in the language
of positive definite functions. In fact, a Banach space (X, ‖ · ‖) is isometric to a
subspace of Lp with 0 < p ≤ 2 if and only if the function exp(−‖x‖p) is positive
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definite [1]. The main example of this paper gives a norm such that the function
exp(−‖x‖1/2) is positive definite but the function exp(−‖x‖) is not positive definite.
This result is close to problems of Schoenberg’s type (see [4]).

In this article, we consider real Banach spaces only.

2. The idea of the construction

Let f be an infinitely differentiable even function on the unit sphere Sn in Rn.
We spoil the Euclidean norm ‖x‖2 in Rn by means of the function f. Namely, for
λ > 0 consider the function

(1) Nλ(x) = ‖x‖2
(
1 + λf(

x

‖x‖2
)
)
, x ∈ Rn.

One can choose λ small enough so that Nλ is a norm in Rn. This follows from
a simple one-dimensional consideration: if a, b ∈ R, g is a convex function on [a, b]
with g′′ > δ > 0 on [a, b] and h ∈ C2[a, b], then the functions g + λh have positive
second derivatives on [a, b] for sufficiently small λ’s and, hence, are convex on [a, b].

Let λf = sup{λ > 0 : Nt is a norm in Rn for every t ≤ λ}. For each λ ≤ λf , we
denote by Xλ the Banach space with the norm ‖x‖λ = Nλ(x).

Theorem 2 from the paper [5] shows that, for every q > 0 which is not an even
integer, there exists a small enough number λ such that the space Xt is isometric
to a subspace of Lq for every t ≤ λ. This fact was used in [5] to prove that for every
compact subset Q of (0,∞)\{2k, k ∈ N} there exists a Banach space different from
Hilbert spaces which is isometric to a subspace of Lq for every q ∈ Q.

For q ∈ (0, 1], let λq = sup{λ > 0 : Xt is isometric to a subspace of Lq for
every t ≤ λ}. If 0 < q < p ≤ 2, then the space Lp is isometric to a subspace of Lq;
therefore, λp ≤ λq. In particular, λ1 ≤ λq for every q < 1. Clearly, λ1 ≤ λf .

Now we can explain the idea of getting a Banach subspace of Lq with q < 1
which is not isometric to a subspace of L1. Suppose we can find a function f so
that λ1 is strictly less than λf , and also λ1 is strictly less than λq. Then, for every
λ ∈ (λ1, min(λf , λq)], the space Xλ is a Banach space with the desired property.

Similarly, for q < p < 1, if we manage to find a function f so that λp < λq and
λp < λf we get an example of a Banach space which embeds isometrically in Lq
but does not embed in Lp.

The construction in [5] is based on the use of spherical harmonics and, in general,
does not give a chance to calculate the numbers λq exactly. We are, however, able
to choose a function f for which it is possible to calculate the numbers λq for certain
values of q. Our calculations do not depend on the results from [5] mentioned above,
so the paper [5] only shows a direction for constructing examples.

We shall use one simple characterization of finite-dimensional subspaces of Lq.

Proposition 1. Let q be a positive number which is not an even integer, let
(X, ‖ · ‖) be an n-dimensional Banach space, and suppose there exists a contin-
uous function b on the sphere Sn in Rn such that, for every x ∈ Rn,

(2) ‖x‖q =

∫
Sn

|(x, ξ)|q b(ξ) dξ

where (x, ξ) stands for the scalar product in Rn.
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Then X is isometric to a subspace of Lq if and only if b is a non-negative (not
identically zero) function.

Proof. If b is a non-negative function we can assume without loss of generality
that

∫
Sn
b(ξ) dξ = 1. Choose any measurable (with respect to Lebesgue measure)

functions f1, . . . , fn on [0, 1] having the joint distribution b(ξ)dξ. Then, by (2), the
operator x 7→

∑
xifi, x ∈ Rn, is an isometry from X to Lq([0, 1]).

Conversely, if X is a subspace of Lq([0, 1]) choose any functions f1, ..., fn
∈ Lq which form a basis in X, and let µ be the joint distribution of the functions
f1, ..., fn with respect to Lebesgue measure. Then, for every x ∈ Rn,

‖x‖q = ‖
n∑
k=1

xkfk‖q =

∫ 1

0

|
n∑
k=1

xkfk(t)|qdt

=

∫
Rn
|(x, ξ)|q dµ(ξ) =

∫
Sn

|(x, ξ)|q dν(ξ)

where ν is the projection of µ to the sphere. (For every Borel subset A of Sn,
ν(A) =

∫
{tA,t∈R} ‖x‖

q
2dµ(x).) It follows from (2) that∫
Sn

|(x, ξ)|q b(ξ) dξ =

∫
Sn

|(x, ξ)|q dν(ξ)

for every x ∈ Rn. Since q is not an even integer, we can apply the uniqueness
theorem for measures on the sphere from [3] to show that dν(ξ) = b(ξ) dξ, which
means that b(ξ) dξ is a measure and the function b is non-negative. �

The representation (2) exists for every smooth enough function on the sphere
(see, for example, Theorem 1 from [5]). We are going to choose special smooth
norms for which it is possible to calculate the function b exactly and then check if
b is non-negative. In this way we calculate the numbers λq for these norms.

We need the representation (2) for some simple functions on the sphere.

Lemma 1. For every x = (x1, . . . , xn) from the unit sphere Sn in Rn and every
q > 0 we have

(3) x2
n =

Γ((n+ q)/2)

2π(n−1)/2Γ((q + 1)/2)

∫
Sn

|(x, ξ)|q
(n+ q

q
ξ2
n −

1

q

)
dξ.

Therefore,

(4) x2
n =

Γ((2n+ 1)/4)

2π(n−1)/2Γ(3/4)

∫
Sn

|(x, ξ)|1/2
(
(2n+ 1)ξ2

n − 2
)
dξ

and

(5) x2
n =

Γ((n+ 1)/2)

2π(n−1)/2

∫
Sn

|(x, ξ)|
(
(n+ 1)ξ2

n − 1
)
dξ.

Besides,

(6) x4
n =

Γ((n+ 1)/2)

2π(n−1)/2

∫
Sn

|(x, ξ)|
(
− (n+ 3)(n+ 1)ξ4

n + 6(n+ 1)ξ2
n − 3

)
dξ.
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Proof. It is a well-known simple fact (see, for example, [7]) that for every x ∈ Rn
and every k > 0,

(7) (x2
1 + · · ·+ x2

n)k =
Γ((n+ 2k)/2)

2π(n−1)/2Γ((2k + 1)/2)

∫
Sn

|(x, ξ)|2k dξ.

Differentiate both sides of (7) by xn twice, and then use the fact that x ∈ Sn to get

1 + (2k − 2)x2
n = (2k − 1)

Γ((n+ 2k)/2)

2π(n−1)/2Γ((2k + 1)/2)

∫
Sn

|(x, ξ)|2k−2ξ2
n dξ.

Use (7) with the exponent 2k − 2 instead of 2k to get

(2k − 2)x2
n =

1

2π(n−1)/2

∫
Sn

|(x, ξ)|2k−2
(

(2k − 1)
Γ((n+ 2k)/2)

Γ((2k + 1)/2)
ξ2
n

− Γ((n+ 2k − 2)/2)

Γ((2k − 1)/2)

)
dξ.

Now use the fact that Γ(x+ 1) = xΓ(x) and put 2k − 2 = q to get (3).
To prove (6), differentiate both sides of (7) four times by xn (remember that

x2
1 + · · · + x2

n = 1; do not factor the second and the third derivatives!), and then
put k = 5/2 :

−x4
n + 6x2

n + 3 =
4Γ((n+ 5)/2)

2π(n−1)/2

∫
Sn

|(x, ξ)|ξ4
n dξ.

Now use (5), (7) with k = 1/2, and the fact that Γ(x+ 1) = xΓ(x) to get (6). �

3. Examples

For every λ > 0 define a function Nλ on Rn by

Nλ(x) = (x2
1 + · · ·+ x2

n)1/2
(

1 + λ
x2

1 + · · ·+ x2
n−1 − 2x2

n

x2
1 + · · ·+ x2

n

)2

, x ∈ Rn.

Lemma 2. Nλ is a convex function if and only if λ ≤ 1
11 .

Proof. The function Nλ is convex if and only if the following function of two vari-
ables is convex:

g(x, y) = (x2 + y2)1/2
(

1 + λ
x2 − 2y2

x2 + y2

)2

.

Calculating the second derivatives of the function g we get

a2 ∂
2g

∂x2
+ 2ab

∂2g

∂x∂y
+ b2

∂2g

∂y2

= (x2 + y2)−7/2(ay − bx)2

·
(
x4(1− 10λ− 11λ2) + x2y2(2− 2λ+ 104λ2) + y4(1 + 8λ− 20λ2)

)
.

The function g is convex if and only if the latter expression is non-negative for
every choice of a, b, x, y. Clearly, it happens if and only if −1

10 ≤ λ ≤
1
11 . �

For λ ≤ 1
11 denote by Xλ the Banach space with the norm Nλ.
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Theorem 1. Let n ≥ 3. If

αn =
(18n2 − 18n)1/2 − 3n+ 1

9n2 − 12n− 1
< λ ≤ 1

6n− 4
,

then the Banach space Xλ is isometric to a subspace of L1/2 and, at the same time,
Xλ is not isometric to a subspace of L1.

Proof. Let us first prove that the space Xλ is isometric to a subspace of L1/2 if

and only if λ ≤ 1
6n−4 . For every x ∈ Sn, use (4) and (7) with k = 1/4 to get the

representation (2) (with q = 1/2) for the norm Nλ :

N 1/2
λ (x) = 1 + λ(1− 3x2

n)

=
Γ((2n+ 1)/4)

2π(n−1)/2Γ(3/4)

∫
Sn

|(x, ξ)|1/2
(
1 + 7λ− (6n+ 3)λξ2

n

)
dξ.

Clearly, the function b(ξ) = 1 + 7λ− (6n+ 3)λξ2
n is non-negative on Sn if and only

if λ ≤ 1
6n−4 , and the fact we need follows from Proposition 1.

Let us show that Xλ is isometric to a subspace of L1 if and only if λ ≤ αn. If
x ∈ Sn, then Nλ(x) = 1 + 2λ(1 − 3x2

n) + λ2(1 − 6x2
n + 9x4

n). We use (5), (6) and
(7) with k = 1/2 to get the representation (2) for Nλ(x) with q = 1 :

Nλ(x) = Γ((n+ 1)/2)

∫
Sn

|(x, ξ)| b(ξ2
n) dξ

where

b(ξ2
n) = (1 + 8λ− 20λ2) + ξ2

n(n+ 1)(48λ2 − 6λ)− 9ξ4
n(n+ 3)(n+ 1)λ2.

The function b is a quadratic function of ξ2
n with negative first coefficient. By

Proposition 1, the space Xλ embeds in L1 if and only if b is non-negative for every
ξ2
n ∈ [0, 1]. Clearly, it happens if and only if both numbers b(0) = 1 + 8λ − 20λ2

and b(1) = 1 +λ(2− 6n) +λ2(1 + 12n− 9n2) are non-negative. Since 1 + 12n− 9n2

is a negative number for every n ≥ 2 and we consider only positive numbers λ, it
is clear that the condition is that λ ≤ αn. To prove the theorem, it suffices to note
that, for every n ≥ 3, 1

6n−4 is less than 1
11 and αn <

1
6n−2 <

1
6n−4 . �

Remarks. 1. Since every two-dimensional Banach space is isometric to a subspace
of L1, it is impossible to construct a two-dimensional space with the property of
Theorem 1. In our example, α2 = 1

11 , which coincides with the bound from Lemma
2.

2. The author is unable to apply the scheme from Section 2 to every q < 1,
although it is very likely the same idea works. For instance, getting an example
for q = 3/4 is a matter of calculating the eighth derivative of the function
(x2

1 + · · ·+ x2
n)k.

Theorem 1 shows also that the spaces Lq with q < 1 may have different Banach
subspaces. The Banach subspaces of L1/2 constructed in Theorem 1 cannot be
isometric to subspaces of Lq for all q < 1. In fact, if a Banach space (X, ‖ · ‖) is
isometric to a subspace of Lq for every q < 1, then, by a theorem from [1], the
function exp(−‖x‖q) is positive definite for every q < 1. The function exp(−‖x‖)
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is then positive definite as a pointwise limit of positive definite functions, and the
space X (by the same result from [1]) is isometric to a subspace of L1.

On the other hand, we can show the difference directly. For every λ > 0 define
a function Nλ on R3 by

Nλ(x) = (x2
1 + x2

2 + x2
3)1/2

(
1 + λ

x2
1 + x2

2 − 2x2
3

x2
1 + x2

2 + x2
3

)4

, x ∈ R3.

The proof of the following theorem is similar to the proofs of Lemma 2 and
Theorem 1.

Theorem 2. The function Nλ is a norm if and only if λ ≤ 1
23 . The corresponding

Banach space Xλ is isometric to a subspace of L1/4 if and only if λ ≤ 1
26 , and Xλ

is not isometric to a subspace of L1/2 if λ > 1
28 . Thus, for 1

28 < λ ≤ 1
26 , the space

Xλ is a Banach subspace of L1/4 which does not embed isometrically in L1/2.
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