A new matrix inverse
Author:
C. Krattenthaler
Journal:
Proc. Amer. Math. Soc. 124 (1996), 47-59
MSC (1991):
Primary 15A09, 33D20, 33C20; Secondary 05A10, 05A19, 05A30, 11B65, 33C70
DOI:
https://doi.org/10.1090/S0002-9939-96-03042-0
MathSciNet review:
1291781
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We compute the inverse of a specific infinite-dimensional matrix, thus unifying a number of previous matrix inversions. Our inversion theorem is applied to derive a number of summation formulas of hypergeometric type.
- George E. Andrews, Connection coefficient problems and partitions, Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978) Proc. Sympos. Pure Math., XXXIV, Amer. Math. Soc., Providence, R.I., 1979, pp. 1–24. MR 525316
- W. N. Bailey, Some identities in combinatory analysis, Proc. London Math. Soc. (2) 49 (1947), 421–435.
- ---, Identities of the Roger–Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1–10.
- D. M. Bressoud, Some identities for terminating $q$-series, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 211–223. MR 600238, DOI https://doi.org/10.1017/S0305004100058114
- D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), no. 3, 446–448. MR 699411, DOI https://doi.org/10.1090/S0002-9939-1983-0699411-9
- L. Carlitz, Some inverse relations, Duke Math. J. 40 (1973), 893–901. MR 337651
- G. P. Egorychev, Integral′noe predstavlenie i vychislenie kombinatornykh summ, Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1977 (Russian). MR 0491209
- George Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312 (1989), no. 1, 257–277. MR 953537, DOI https://doi.org/10.1090/S0002-9947-1989-0953537-0
- George Gasper and Mizan Rahman, An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas, Canad. J. Math. 42 (1990), no. 1, 1–27. MR 1043508, DOI https://doi.org/10.4153/CJM-1990-001-5
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- Ira Gessel and Dennis Stanton, Applications of $q$-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), no. 1, 173–201. MR 690047, DOI https://doi.org/10.1090/S0002-9947-1983-0690047-7
- H. W. Gould, A series transformation for finding convolution identities, Duke Math. J. 28 (1961), 193–202. MR 123895
- H. W. Gould, A new convolution formula and some new orthogonal relations for inversion of series, Duke Math. J. 29 (1962), 393–404. MR 139906
- H. W. Gould, A new series transform with applications to Bessel, Legendre, and Tchebycheff polynomials, Duke Math. J. 31 (1964), 325–334. MR 161063
- H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J. 32 (1965), 697–711. MR 188510
- H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885–891. MR 337652
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. A foundation for computer science. MR 1001562
- Ch. Krattenthaler, Operator methods and Lagrange inversion: a unified approach to Lagrange formulas, Trans. Amer. Math. Soc. 305 (1988), no. 2, 431–465. MR 924765, DOI https://doi.org/10.1090/S0002-9947-1988-0924765-4
- Mizan Rahman, Some quadratic and cubic summation formulas for basic hypergeometric series, Canad. J. Math. 45 (1993), no. 2, 394–411. MR 1208123, DOI https://doi.org/10.4153/CJM-1993-020-8
- M. Rahman, Some cubic summation formulas for basic hypergeometric series, Utilitas Math. 36 (1989), 161–172. MR 1030781
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- D. Singer, $q$-analogues of Lagrange inversion, Ph.D. Thesis, Univ. of California, San Diego, CA, 1992.
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- A. Verma and V. K. Jain, Transformations of nonterminating basic hypergeometric series, their contour integrals and applications to Rogers-Ramanujan identities, J. Math. Anal. Appl. 87 (1982), no. 1, 9–44. MR 653604, DOI https://doi.org/10.1016/0022-247X%2882%2990151-2
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 15A09, 33D20, 33C20, 05A10, 05A19, 05A30, 11B65, 33C70
Retrieve articles in all journals with MSC (1991): 15A09, 33D20, 33C20, 05A10, 05A19, 05A30, 11B65, 33C70
Additional Information
C. Krattenthaler
Affiliation:
Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien Austria
MR Author ID:
106265
Email:
kratt@pap.univie.ac.at
Keywords:
Matrix inversion,
inverse relations
Communicated by:
Louis J. Ratliff, Jr.
Article copyright:
© Copyright 1996
American Mathematical Society