Class numbers and Iwasawa invariants of quadratic fields
HTML articles powered by AMS MathViewer
- by James S. Kraft
- Proc. Amer. Math. Soc. 124 (1996), 31-34
- DOI: https://doi.org/10.1090/S0002-9939-96-03085-7
- PDF | Request permission
Abstract:
Let $\mathbf {Q}(\sqrt {-d})$ and $\mathbf {Q}(\sqrt {3d})$ be quadratic fields with $d \equiv$ 2 (mod 3) a positive integer. Let $\lambda ^-, \lambda ^+$ be the respective Iwasawa $\lambda$-invariants of the cyclotomic $\mathbf {Z}_3$-extension of these fields. We show that if $\lambda ^- =1$, then 3 does not divide the class number of $\mathbf {Q}(\sqrt {3d})$ and $\lambda ^+ = 0$.References
- K. Horie, A note on basic Iwasawa $\lambda$-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31–38, MR 88i:11073.
K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258, MR 18:644d.
N. Jochnowitz, A $p$-adic conjecture about derivatives of $L-series attatched to modular forms\closeXMLelement {italic}, Proceedings of the Boston University Conference on$p$-Adic Monodromy and the$p$-Adic Birch and Swinnerton-Dyer Conjecture (to appear), CMP \textbf {94:13}.$
N. Jochnowitz, An alternative approach to non-vanishing theorems for coefficients of half integral weight forms mod $p$ and implications for Iwasawa’s $\lambda$-invariant for quadratic fields (to appear).
L. Washington, Zeroes of $p$-adic $L$-functions, Sém Delange-Pisot- Poitou, Théorie des Nombres, 1980/1981, Birkhäuser, Boston, Basel, and Stuttgart, 1982, MR 84f:12008.
L. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., Springer-Verlag, New York, 1982, MR 85g:11001.
Bibliographic Information
- James S. Kraft
- Email: kraft@ithaca.edu
- Received by editor(s): September 1, 1993
- Received by editor(s) in revised form: August 1, 1994
- Communicated by: William Adams
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 31-34
- MSC (1991): Primary 11R11, 11R23, 11R29
- DOI: https://doi.org/10.1090/S0002-9939-96-03085-7
- MathSciNet review: 1301510