CLASS NUMBERS AND IWASAWA INVARIANTS
OF QUADRATIC FIELDS

JAMES S. KRAFT

(Communicated by William Adams)

Abstract. Let \(\mathbf{Q}(\sqrt{-d}) \) and \(\mathbf{Q}(\sqrt{3d}) \) be quadratic fields with \(d \equiv 2 \) (mod 3) a positive integer. Let \(\lambda^-, \lambda^+ \) be the respective Iwasawa \(\lambda \)-invariants of the cyclotomic \(\mathbb{Z}_3 \)-extension of these fields. We show that if \(\lambda^- = 1 \), then 3 does not divide the class number of \(\mathbf{Q}(\sqrt{3d}) \) and \(\lambda^+ = 0 \).

Introduction

Let \(k^- = \mathbf{Q}(\sqrt{-d}) \) and \(k^+ = \mathbf{Q}(\sqrt{3d}) \) with \(d \) a positive integer. In [5], Washington showed that constraints on the 3-Sylow subgroup and the fundamental unit of \(k^+ \) force \(\lambda^- \) to be 1, where \(\lambda^- \) is the Iwasawa \(\lambda \)-invariant associated to the cyclotomic \(\mathbb{Z}_3 \)-extension of \(k^- \). Here, using similar methods, we show that if \(\lambda^- = 1 \) and 3 splits in \(k^- \), then 3 does not divide the class number of \(k^+ \). Since recent results of Jochnowitz [3, 4] imply that there are infinitely many imaginary quadratic fields in which 3 splits and \(\lambda^- = 1 \), we obtain as a corollary that there are infinitely many real quadratic fields \(\mathbf{Q}(\sqrt{3d}) \) with 3 splitting in \(\mathbf{Q}(\sqrt{-d}) \) such that the class number of \(\mathbf{Q}(\sqrt{3d}) \) is relatively prime to 3. (We note that Horie [1] has proven a similar result concerning real quadratic fields by requiring that 3 neither divides the class number of nor splits in \(\mathbf{Q}(\sqrt{-d}) \).)

It then follows that there are infinitely many real quadratic fields with \(\lambda^+ = 0 \), where \(\lambda^+ \) is the Iwasawa \(\lambda \)-invariant associated to the \(\mathbb{Z}_3 \)-extension of \(k^+ \).

The author wishes to thank Lawrence Washington for many informative conversations.

1

We begin with a brief review of \(p \)-adic \(L \)-functions. For more details, see [6]. Let \(p \) be an odd prime and let \(\mathbb{Z}_p \), \(\mathbf{Q}_p \) and \(\mathbf{C}_p \) denote the \(p \)-adic integers, the \(p \)-adic rationals and the completion of the algebraic closure of \(\mathbf{Q}_p \) respectively. Let \(\omega \) denote the Teichmüller character and let \(\psi \) be a primitive Dirichlet character of conductor \(f \), with \(p^2 \) not dividing \(f \). We let \(d = f \) if \(p \) does not divide \(f \) and \(d = \frac{f}{p} \) if \(p \) does divide \(f \). The generalized Bernoulli number \(B_{n,\psi} \) is defined by

\[
\sum_{a=1}^{f} \frac{\psi(a)e^{at}}{e^{at} - 1} = \sum_{n=0}^{\infty} B_{n,\psi} \frac{t^n}{n!}.
\]
The \(p \)-adic \(L \)-function \(L_p(s, \psi) \) is the unique meromorphic \(p \)-adic function \(\mathbb{Z}_p \rightarrow \mathbb{C}_p \) which for \(n \geq 1 \) satisfies

\[
L_p(1 - n, \psi) = -(1 - \psi \omega^{-n})(p)n^{-1} B_{n,\psi\omega^{-n}}.
\]

In order to ensure that \(L_p(s, \psi) \) is not identically zero, we now assume that \(\psi \) is a non-trivial even character. If \(O_\psi = \mathbb{Z}_p[\psi(1), \psi(2), \ldots] \), Iwasawa has shown that there is a power series \(F(T, \psi) \in \mathcal{O}_\psi[[T]] \) such that

\[
L_p(s, \psi) = F((1 + pd)^s - 1, \psi).
\]

From the \(p \)-adic Weierstrass Preparation Theorem [6] we see that \(F(T, \psi) = G(T) U(T) \) where \(U(T) \) is a unit of \(\mathcal{O}_\psi[[T]] \) and \(G(T) \) is a distinguished polynomial. Then, \(G(T) = a_0 + a_1 T + \cdots + a_{\lambda - 1} T^{\lambda - 1} + T^\lambda \) and if \(\pi \) generates the ideal of \(O_\psi \) lying over \(p \), then \(\pi \) divides \(a_i \), \(0 \leq i \leq \lambda - 1 \). We note that if \(\psi \) is an even quadratic character and \(p = 3 \), then \(\lambda \) is related to the class group of certain number fields. That is, we let \(k \) be the imaginary quadratic field associated to \(\psi \omega^{-1} \) with \(k_\infty \) its cyclotomic \(\mathbb{Z}_3 \)-extension. Also, let \(k_n \) be the unique subfield of \(k_\infty \) of degree \(3^n \) over \(k \) and let \(A_n \) be the \(3 \)-Sylow subgroup of \(k_n \). Then, via the natural injection \(A_n \rightarrow A_{n+1} \) for all \(n \geq 0 \),

\[
\bigcup_{n \geq 0} A_n \cong (\mathbb{Q}_3/\mathbb{Z}_3)^\lambda.
\]

Let \(K \) be a real quadratic field with character \(\chi \), fundamental unit \(\epsilon \), discriminant \(D \) and class number \(h^+ \). Leopoldt’s \(p \)-adic class number formula says that

\[
\frac{2h^+ \log_p(\epsilon)}{\sqrt{D}} \left(1 - \frac{\chi(p)}{p} \right) = L_p(1, \chi)
\]

where \(\log_p \) denotes the \(p \)-adic logarithm.

We now assume that \(p = 3 \) and let \(\lambda^- \) (resp. \(\lambda^+ \)) be the Iwasawa \(\lambda \)-invariant associated to the cyclotomic \(\mathbb{Z}_3 \)-extension of \(\mathbb{Q}(\sqrt{-d}) \) (resp. \(\mathbb{Q}(\sqrt{3d}) \)) for the prime 3.

Theorem. Assume \(d \equiv 2 \pmod{3} \) and \(\lambda^- = 1 \). Then 3 does not divide the class number of \(\mathbb{Q}(\sqrt{3d}) \). In particular, \(\lambda^+ = 0 \).

Proof. Let \(\chi \) be the non-trivial even quadratic character of conductor \(3d \). Since 3 splits in \(\mathbb{Q}(\sqrt{-d}) \), we have that \(L_3(0, \chi) = 0 \) from (1). Furthermore, since \(\chi^\lambda = 1 \), \(F(T, \chi) = (b_0 + b_1 T) U(T) \) where \(U(T) \) is a unit of \(\mathbb{Z}_3[[T]] \) and \(b_1 \) is a 3-adic unit. Because \(L_3(0, \chi) = F(0, \chi) \), we have \(F(T, \chi) = (b_1 T) U(T) \). Since 3 does not divide \(b_1 \), \(L_3(1, \chi) \neq 0 \pmod{9} \). (See Lemma 1 of [5].) Then,

\[
\frac{2h^+ \log_3(\epsilon)}{\sqrt{D}} \neq 0 \pmod{9}
\]

from (2). Thus, in order to prove that 3 does not divide \(h^+ \), it suffices to show that \(\log_3(\epsilon) \equiv 0 \pmod{3\sqrt{3d}} \). In order to prove this congruence, note that the
3-integrality of $L_3(1, \chi)$ together with the fact that in this situation there is a $\sqrt{3d}$ in the denominator of (2) imply that $\log_3(\epsilon)$ must have half-integral (non-integral) 3-adic valuation. Thus, it is sufficient to show that $\log_3(\epsilon) \equiv 0 \mod 3$. Let

$$\epsilon = a + b\sqrt{3d} \text{ or } a + b\sqrt{3d}/2.$$

Then

$$\epsilon^2 - 1 \equiv 2ab\sqrt{3d} \pmod{3}.$$

Since

$$\log_3(\epsilon^2) = \log_3(\epsilon^2 - 1 + 1) \equiv (\epsilon^2 - 1) - \frac{(\epsilon^2 - 1)^2}{2} + \frac{(\epsilon^2 - 1)^3}{3} \pmod{3},$$

we see that

$$\log_3(\epsilon^2) \equiv 2ab\sqrt{3d} + 8a^3b^3d\sqrt{3d} \pmod{3}.$$

Since $d \equiv 2 \pmod{3}$, we see that $\log_3(\epsilon^2) \equiv 0 \pmod{3}$. Thus, $\log_3(\epsilon) \equiv 0 \pmod{3}$ as well.

Finally, a theorem of Iwasawa [2] says that if 3 totally ramifies in the cyclotomic \mathbb{Z}_3-extension of $\mathbb{Q}(\sqrt{3d})$ and h^+ is not divisible by 3, then $\lambda^+ = 0$.

In [4], Jochnowitz proves that given an arbitrary odd prime p, there are infinitely many imaginary quadratic fields in which p splits and whose Iwasawa λ-invariant associated to p equals 1. This immediately implies the following.

Corollary. There are infinitely many real quadratic fields which have class number not divisible by 3 and whose Iwasawa λ-invariant associated to 3 equals zero.

Examples. We now give several examples. The first illustrates our theorem, the next two show that if $d \not\equiv 2 \pmod{3}$ and $\lambda^- = 1$, then it is possible to have 3 dividing h^+, and the final one shows that if $d \equiv 2 \pmod{3}$ and $\lambda^- \neq 1$, then it is also possible to have 3 dividing h^+.

<table>
<thead>
<tr>
<th>d</th>
<th>λ^-</th>
<th>h^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>237</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>262</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>107</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

References

4. ______, An alternative approach to non-vanishing theorems for coefficients of half integral weight forms mod \(p \) and implications for Iwasawa’s \(\lambda \)-invariant for quadratic fields (to appear).
