## A ZFC example (of minimum weight) of a Lindelöf space and a completely metrizable space with a nonnormal product

HTML articles powered by AMS MathViewer

- by L. Brian Lawrence PDF
- Proc. Amer. Math. Soc.
**124**(1996), 627-632 Request permission

## Abstract:

We give an example as indicated in the title where the weight (i.e., the minimum cardinality of a base for the topology) of the product is the smallest uncountable cardinal.## References

- K. Alster,
*The product of a Lindelöf space with the space of irrationals under Martin’s axiom*, Proc. Amer. Math. Soc.**110**(1990), no. 2, 543–547. MR**993736**, DOI 10.1090/S0002-9939-1990-0993736-9 - K. Alster,
*Some remarks concerning the Lindelöf property of the product of a Lindelöf space with the irrationals*, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 19–25. MR**1173239**, DOI 10.1016/0166-8641(92)90075-B - K. Alster and G. Gruenhage,
*Remarks on the product of Lindelöf spaces*(to appear). - Amer Bešlagić,
*Normality in products*, The work of Mary Ellen Rudin (Madison, WI, 1991) Ann. New York Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 17–46. MR**1277879**, DOI 10.1111/j.1749-6632.1993.tb12523.x - L. Brian Lawrence,
*The influence of a small cardinal on the product of a Lindelöf space and the irrationals*, Proc. Amer. Math. Soc.**110**(1990), no. 2, 535–542. MR**1021211**, DOI 10.1090/S0002-9939-1990-1021211-4 - E. Michael,
*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc.**69**(1963), 375–376. MR**152985**, DOI 10.1090/S0002-9904-1963-10931-3 - Ernest A. Michael,
*Paracompactness and the Lindelöf property in finite and countable Cartesian products*, Compositio Math.**23**(1971), 199–214. MR**287502** - Teodor C. Przymusiński,
*Products of normal spaces*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 781–826. MR**776637**

## Additional Information

**L. Brian Lawrence**- Affiliation: Department of Mathematics, George Mason University, Fairfax, Virginia 22030-4444
- Received by editor(s): November 24, 1992
- Received by editor(s) in revised form: March 14, 1994
- Communicated by: Franklin D. Tall
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 627-632 - MSC (1991): Primary 54B10; Secondary 54D20, 54E50
- DOI: https://doi.org/10.1090/S0002-9939-96-02864-X
- MathSciNet review: 1273506