A Farey tree organization of locking regions for simple circle maps
HTML articles powered by AMS MathViewer
- by K. M. Brucks and C. Tresser
- Proc. Amer. Math. Soc. 124 (1996), 637-647
- DOI: https://doi.org/10.1090/S0002-9939-96-03025-0
- PDF | Request permission
Abstract:
Let $f$ be a $C^3$ circle endomorphism of degree one with exactly two critical points and negative Schwarzian derivative. Assume that there is no real number $a$ such that $f + a$ has a unique rotation number equal to $\frac {p}{q}$. Then the same holds true for any $\frac {p’}{q’}$ such that $\frac {p}{q}$ stands above $\frac {p’}{q’}$ in the Farey tree and can be related to it by a path on the tree.References
- L. Alsedá, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, World Scientific, River Edge, NJ, 1993, .
- P. M. Blecher and M. V. Jakobson, Absolutely continuous invariant measures for some maps of the circle, Statistical physics and dynamical systems (Köszeg, 1984) Progr. Phys., vol. 10, Birkhäuser Boston, Boston, MA, 1985, pp. 303–315. MR 821303
- Philip L. Boyland, Bifurcations of circle maps: Arnol′d tongues, bistability and rotation intervals, Comm. Math. Phys. 106 (1986), no. 3, 353–381. MR 859816, DOI 10.1007/BF01207252
- Alain Chenciner, Jean-Marc Gambaudo, and Charles Tresser, Une remarque sur les familles d’endomorphismes de degré $1$ du cercle, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 771–773. MR 772091
- A. Epstein, L. Keen, and C. Tresser, The set of maps $f_{a,b} : \theta \mapsto \theta + a + \frac {b}{2 \pi } \cdot \sin (2 \pi \theta )$ with any given rotation numbers is contractible, Comm. Math. Phys. (to appear).
- B. Friedman and C. Tresser, Comb structure in hairy boundaries: some transition problems for circle maps, Phys. Lett. A 117 (1986), no. 1, 15–22. MR 851335, DOI 10.1016/0375-9601(86)90228-8
- Jean-Marc Gambaudo and Charles Tresser, On the dynamics of quasi-contractions, Bol. Soc. Brasil. Mat. 19 (1988), no. 1, 61–114. MR 1018928, DOI 10.1007/BF02584821
- L. Goldberg and C. Tresser, Rotation orbits and the farey tree, Ergodic Theory Dynamical Systems (to appear).
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- K. M. Khanin, Universal estimates for critical circle mappings, Chaos 1 (1991), no. 2, 181–186. MR 1135906, DOI 10.1063/1.165826
- R. S. MacKay and C. Tresser, Transition to topological chaos for circle maps, Phys. D 19 (1986), no. 2, 206–237. MR 844701, DOI 10.1016/0167-2789(86)90020-5
- H. Poincaré, Sur les courbes définies par des équations différentielles, J. Math. Pures Appl. (4) 1 (1885), 167–244, Euvres Complètes.
- R. M. Siegel, C. Tresser, and G. Zettler, A decoding problem in dynamics and in number theory, Chaos 2 (1982), 473–494.
- David J. Uherka, Charles Tresser, Roza Galeeva, and David K. Campbell, Errata: “Solvable models for the quasi-periodic transition to chaos” [Phys. Lett. A 170 (1992), no. 3, 189–194; MR1187926 (93h:58106)], Phys. Lett. A 177 (1993), no. 6, 461. MR 1227278, DOI 10.1016/0375-9601(93)90981-5
Bibliographic Information
- K. M. Brucks
- Affiliation: Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
- Email: kmbrucks@csd.uwm.edu
- C. Tresser
- Affiliation: Thomas J. Watson Research Center, I.B.M., P.O. Box 218, Yorktown Heights, New York 10598
- MR Author ID: 174225
- Email: tresser@watson.ibm.com
- Received by editor(s): July 20, 1994
- Communicated by: Linda Keen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 637-647
- MSC (1991): Primary 58F03
- DOI: https://doi.org/10.1090/S0002-9939-96-03025-0
- MathSciNet review: 1291764