## Strong F-regularity in images of regular rings

HTML articles powered by AMS MathViewer

- by Donna Glassbrenner PDF
- Proc. Amer. Math. Soc.
**124**(1996), 345-353 Request permission

## Abstract:

We characterize strong F-regularity, a property associated with*tight closure*, in a large class of rings. A special case of our results is a workable criterion in complete intersection rings.

## References

- Richard Fedder,
*$F$-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), no. 2, 461–480. MR**701505**, DOI 10.1090/S0002-9947-1983-0701505-0 - Richard Fedder and Keiichi Watanabe,
*A characterization of $F$-regularity in terms of $F$-purity*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 227–245. MR**1015520**, DOI 10.1007/978-1-4612-3660-3_{1}1 - N. Hara,
*F-regularity and F-purity of graded rings*, J. Algebra (to appear). - M. Hochster,
*Tight closure in equal characteristic, big Cohen-Macaulay algebras and solid closure*, Special Talk, AMS Summer research conference, Mount Holyoke, July 6, 1992. - Melvin Hochster and Craig Huneke,
*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), no. 1, 31–116. MR**1017784**, DOI 10.1090/S0894-0347-1990-1017784-6 - —,
*Tight closures of parameter ideals and splitting in module-finite extensions*, preprint. - —,
*F-regularity, test elements, and smooth base change*, preprint. - Melvin Hochster and Craig Huneke,
*Tight closure and strong $F$-regularity*, Mém. Soc. Math. France (N.S.)**38**(1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR**1044348** - Melvin Hochster and Joel L. Roberts,
*The purity of the Frobenius and local cohomology*, Advances in Math.**21**(1976), no. 2, 117–172. MR**417172**, DOI 10.1016/0001-8708(76)90073-6 - Ernst Kunz,
*Characterizations of regular local rings of characteristic $p$*, Amer. J. Math.**91**(1969), 772–784. MR**252389**, DOI 10.2307/2373351 - Ernst Kunz,
*On Noetherian rings of characteristic $p$*, Amer. J. Math.**98**(1976), no. 4, 999–1013. MR**432625**, DOI 10.2307/2374038 - K. E. Smith,
*F-rational rings have rational singularities*, preprint. - Keiichi Watanabe,
*$F$-regular and $F$-pure normal graded rings*, J. Pure Appl. Algebra**71**(1991), no. 2-3, 341–350. MR**1117644**, DOI 10.1016/0022-4049(91)90157-W

## Additional Information

**Donna Glassbrenner**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 345-353 - MSC (1991): Primary 13A35
- DOI: https://doi.org/10.1090/S0002-9939-96-03030-4
- MathSciNet review: 1291770