Strong F-regularity in images of regular rings
HTML articles powered by AMS MathViewer
- by Donna Glassbrenner
- Proc. Amer. Math. Soc. 124 (1996), 345-353
- DOI: https://doi.org/10.1090/S0002-9939-96-03030-4
- PDF | Request permission
Abstract:
We characterize strong F-regularity, a property associated with tight closure, in a large class of rings. A special case of our results is a workable criterion in complete intersection rings.References
- Richard Fedder, $F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR 701505, DOI 10.1090/S0002-9947-1983-0701505-0
- Richard Fedder and Keiichi Watanabe, A characterization of $F$-regularity in terms of $F$-purity, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 227–245. MR 1015520, DOI 10.1007/978-1-4612-3660-3_{1}1
- N. Hara, F-regularity and F-purity of graded rings, J. Algebra (to appear).
- M. Hochster, Tight closure in equal characteristic, big Cohen-Macaulay algebras and solid closure, Special Talk, AMS Summer research conference, Mount Holyoke, July 6, 1992.
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- —, Tight closures of parameter ideals and splitting in module-finite extensions, preprint.
- —, F-regularity, test elements, and smooth base change, preprint.
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, Mém. Soc. Math. France (N.S.) 38 (1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- K. E. Smith, F-rational rings have rational singularities, preprint.
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI 10.1016/0022-4049(91)90157-W
Bibliographic Information
- Donna Glassbrenner
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 345-353
- MSC (1991): Primary 13A35
- DOI: https://doi.org/10.1090/S0002-9939-96-03030-4
- MathSciNet review: 1291770