Curvature and finite domination
HTML articles powered by AMS MathViewer
- by Michael Weiss
- Proc. Amer. Math. Soc. 124 (1996), 615-622
- DOI: https://doi.org/10.1090/S0002-9939-96-03056-0
- PDF | Request permission
Abstract:
Upper bounds obtained by Gromov on the Betti numbers of certain closed Riemannian manifolds are shown to be upper bounds on the minimum number of cells in $CW$–spaces dominating such manifolds.References
- Uwe Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 651–670. MR 839689, DOI 10.24033/asens.1499
- U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 475–502. MR 925724, DOI 10.24033/asens.1541
- Simon Aloff and Nolan R. Wallach, An infinite family of distinct $7$-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93–97. MR 370624, DOI 10.1090/S0002-9904-1975-13649-4
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Michael Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. MR 630949, DOI 10.1007/BF02566208
- M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), no. 2, 231–241. MR 540942, DOI 10.4310/jdg/1214434488
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112,
Bibliographic Information
- Michael Weiss
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003
- MR Author ID: 223956
- Email: msweiss@math.lsa.umich.edu
- Received by editor(s): February 1, 1994
- Received by editor(s) in revised form: February 22, 1994, and August 9, 1994
- Communicated by: Christopher Croke
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 615-622
- MSC (1991): Primary 53C21, 53C20; Secondary 57Q10
- DOI: https://doi.org/10.1090/S0002-9939-96-03056-0
- MathSciNet review: 1291795