Banach algebras with unique uniform norm
HTML articles powered by AMS MathViewer
- by S. J. Bhatt and H. V. Dedania
- Proc. Amer. Math. Soc. 124 (1996), 579-584
- DOI: https://doi.org/10.1090/S0002-9939-96-03063-8
- PDF | Request permission
Abstract:
Commutative semisimple Banach algebras that admit exactly one uniform norm (not necessarily complete) are investigated. This unique uniform norm property is completely characterized in terms of each of spectral radius, Silov boundary, set of uniqueness, semisimple norms; and its connection with recently investigated concepts like spectral extension property, multiplicative Hahn Banach extension property and permanent radius are revealed. Several classes of Banach algebras having this property as well as those not having this property are discussed.References
- Bernard Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Mathematics, vol. 735, Springer, Berlin, 1979 (French). MR 549769, DOI 10.1007/BFb0064204
- Bruce A. Barnes, The properties $^{\ast }$-regularity and uniqueness of $C^{\ast }$-norm in a general $^{\ast }$-algebra, Trans. Amer. Math. Soc. 279 (1983), no. 2, 841–859. MR 709587, DOI 10.1090/S0002-9947-1983-0709587-7
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- Ryszard Wójcicki, Set theoretic representations of empirical phenomena, Reports of the Seminar on Formal Methodology of Empirical Sciences (1973), Inst. Philos. and Sociology, Polish Acad. Sci., Wrocław, 1973, pp. 29–34. MR 0411925
- I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964. Translated from the Russian, with a supplementary chapter. MR 0205105
- Taqdir Husain and Saleem Watson, Topological algebras with orthogonal Schauder bases, Pacific J. Math. 91 (1980), no. 2, 339–347. MR 615682, DOI 10.2140/pjm.1980.91.339
- Ronald Larsen, Banach algebras, Pure and Applied Mathematics, No. 24, Marcel Dekker, Inc., New York, 1973. An introduction. MR 0487369
- Gerald M. Leibowitz, Lectures on complex function algebras, Scott, Foresman & Co., Glenview, Ill., 1970. MR 0428042
- M. J. Meyer, Submultiplicative norms on Banach algebras, Ph.D. Thesis, University of Oregon, 1989.
- Michael J. Meyer, The spectral extension property and extension of multiplicative linear functionals, Proc. Amer. Math. Soc. 112 (1991), no. 3, 855–861. MR 1052578, DOI 10.1090/S0002-9939-1991-1052578-X
- Michael J. Meyer, Minimal incomplete norms on Banach algebras, Studia Math. 102 (1992), no. 1, 77–85. MR 1164634, DOI 10.4064/sm-102-1-77-85
- Theodore W. Palmer, Spectral algebras, Rocky Mountain J. Math. 22 (1992), no. 1, 293–328. MR 1159960, DOI 10.1216/rmjm/1181072812
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Bohdan J. Tomiuk and Bertram Yood, Incomplete normed algebra norms on Banach algebras, Studia Math. 95 (1989), no. 2, 119–132. MR 1038499, DOI 10.4064/sm-95-2-119-132
Bibliographic Information
- S. J. Bhatt
- Affiliation: Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
- H. V. Dedania
- Affiliation: Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India
- Address at time of publication: Department of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- MR Author ID: 338194
- ORCID: 0000-0002-6353-6924
- Received by editor(s): May 16, 1994
- Received by editor(s) in revised form: September 12, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 579-584
- MSC (1991): Primary 46J05
- DOI: https://doi.org/10.1090/S0002-9939-96-03063-8
- MathSciNet review: 1301488