Extension of orderings on $*$-fields
HTML articles powered by AMS MathViewer
- by Thomas C. Craven
- Proc. Amer. Math. Soc. 124 (1996), 397-405
- DOI: https://doi.org/10.1090/S0002-9939-96-03067-5
- PDF | Request permission
Abstract:
An analysis is made of the ways in which a total ordering of the set of symmetric elements of a skew field with involution can be extended to an ordering of a larger set of elements. This is done for several different types of orderings found in the literature.References
- M. Chacron, $c$-orderable division rings with involution, J. Algebra 75 (1982), no. 2, 495–522. MR 653905, DOI 10.1016/0021-8693(82)90053-9
- M. Chacron, $C$-valuations and normal $C$-orderings, Canad. J. Math. 41 (1989), no. 1, 14–67. MR 996717, DOI 10.4153/CJM-1989-002-6
- M. Chacron, A symmetric version of the notion of $c$-ordering, Comm. Algebra 18 (1990), no. 9, 3059–3084. MR 1063351, DOI 10.1080/00927879008824061
- Thomas C. Craven, Orderings and valuations on ${}^*$-fields, Rocky Mountain J. Math. 19 (1989), no. 3, 629–646. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986). MR 1043236, DOI 10.1216/RMJ-1989-19-3-629
- Thomas C. Craven, Approximation properties for orderings on $*$-fields, Trans. Amer. Math. Soc. 310 (1988), no. 2, 837–850. MR 973179, DOI 10.1090/S0002-9947-1988-0973179-X
- Thomas C. Craven, Witt groups of Hermitian forms over $\ast$-fields, J. Algebra 147 (1992), no. 1, 96–127. MR 1154677, DOI 10.1016/0021-8693(92)90255-K
- —, Orderings, valuations and hermitian forms over $*$-fields, 1992 Summer Research Institute on Quadratic Forms and Division Algebras: Connections with Algebraic K-theory and Algebraic Geometry, Part 2, (W. Jacob and A. Rosenberg, eds.), Amer. Math. Soc., Providence, RI, 1995, pp. 149–160.
- John Dauns, A concrete approach to division rings, R & E, vol. 2, Heldermann Verlag, Berlin, 1982. MR 671253
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Samuel S. Holland Jr., $^{\ast }$-valuations and ordered $^{\ast }$-fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 219–243. MR 583853, DOI 10.1090/S0002-9947-1980-0583853-8
- Samuel S. Holland Jr., Strong ordering of $^\ast$-fields, J. Algebra 101 (1986), no. 1, 16–46. MR 843688, DOI 10.1016/0021-8693(86)90094-3
- Ismail M. Idris, Jordan ordering of a division ring with involution, Arabian J. Sci. Engrg. 14 (1989), no. 4, 527–535 (English, with Arabic summary). MR 1051724
- Patrick J. Morandi and Adrian R. Wadsworth, Baer orderings with noninvariant valuation ring, Israel J. Math. 68 (1989), no. 2, 241–255. MR 1035892, DOI 10.1007/BF02772663
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, New York-Heidelberg, 1971. Second printing, corrected. MR 0347768
Bibliographic Information
- Thomas C. Craven
- Affiliation: Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822-2273
- Email: tom@math.hawaii.edu
- Received by editor(s): July 1, 1993
- Received by editor(s) in revised form: September 7, 1994
- Communicated by: Lance W. Small
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 397-405
- MSC (1991): Primary 12E15, 12J15; Secondary 16K40
- DOI: https://doi.org/10.1090/S0002-9939-96-03067-5
- MathSciNet review: 1301492