## On a measure-theoretic problem of Arveson

HTML articles powered by AMS MathViewer

- by Richard Haydon and Victor Shulman PDF
- Proc. Amer. Math. Soc.
**124**(1996), 497-503 Request permission

## Abstract:

A probability measure $\nu$ on a product space $X\times Y$ is said to be bistochastic with respect to measures $\lambda$ on $X$ and $\mu$ on $Y$ if the marginals $\pi _1(\nu )$ and $\pi _2(\mu )$ are exactly $\lambda$ and $\mu$. A solution is presented to a problem of Arveson about sets which are of measure zero for all such $\nu$.## References

- William Arveson,
*Operator algebras and invariant subspaces*, Ann. of Math. (2)**100**(1974), 433–532. MR**365167**, DOI 10.2307/1970956 - Cahit Arf,
*Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper*, J. Reine Angew. Math.**181**(1939), 1–44 (German). MR**18**, DOI 10.1515/crll.1940.181.1 - P. Erdös,
*Note on products of consecutive integers*, J. London Math. Soc.**14**(1939), 194–198. MR**22**, DOI 10.1112/jlms/s1-14.3.194 - Claude Dellacherie and Paul-André Meyer,
*Probabilités et potentiel*, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue. MR**0488194** - C.A. Rogers et al.,
*Analytic Sets*, Academic Press, London, 1980. - Laurent Schwartz,
*Radon measures on arbitrary topological spaces and cylindrical measures*, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR**0426084** - V. N. Sudakov,
*Geometric problems of the theory of infinite-dimensional probability distributions*, Trudy Mat. Inst. Steklov.**141**(1976), 191 (Russian). MR**0431359** - Flemming Topsøe,
*A criterion for weak convergence of measures with an application to convergence of measures on $D[0,1]$*, Math. Scand.**25**(1969), 97–104. MR**254910**, DOI 10.7146/math.scand.a-10944

## Additional Information

**Richard Haydon**- Affiliation: Brasenose College, Oxford OX1 4AJ, United Kingdom
- Email: richard.haydon@brasenose.oxford.ac.uk
**Victor Shulman**- Affiliation: Polytechnic Institute, Lenina Street, 16000 Vologda, Russia
- Email: vagor@vpi.vologda.su
- Received by editor(s): August 29, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 497-503 - MSC (1991): Primary 28A35; Secondary 28A12, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-96-03076-6
- MathSciNet review: 1301501