Infinite covering systems of congruences which don’t exist
HTML articles powered by AMS MathViewer
- by Ethan Lewis
- Proc. Amer. Math. Soc. 124 (1996), 355-360
- DOI: https://doi.org/10.1090/S0002-9939-96-03088-2
- PDF | Request permission
Abstract:
We prove there is no infinite set of congruences with: every integer satisfying exactly one congruence, distinct moduli, the sum of the reciprocals of the moduli equal to 1, the lcm of the moduli divisible by only finitely many primes, and a prime greater than 3 dividing any of the moduli.References
- John Beebee, Examples of infinite, incongruent exact covers, Amer. Math. Monthly 95 (1988), no. 2, 121–123. MR 935423, DOI 10.2307/2323066
- Marc A. Berger, Alexander Felzenbaum, and Aviezri S. Fraenkel, New results for covering systems of residue sets, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 1, 121–126. MR 818066, DOI 10.1090/S0273-0979-1986-15414-5
- M. A. Berger, A. Felzenbaum, A. S. Fraenkel, and R. Holzman, On infinite and finite covering systems, Amer. Math. Monthly 98 (1991), no. 8, 739–742. MR 1130685, DOI 10.2307/2324427
- Aviezri S. Fraenkel and R. Jamie Simpson, On infinite disjoint covering systems, Proc. Amer. Math. Soc. 119 (1993), no. 1, 5–9. MR 1148023, DOI 10.1090/S0002-9939-1993-1148023-8
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Heini Halberstam and Klaus Friedrich Roth, Sequences, 2nd ed., Springer-Verlag, New York-Berlin, 1983. MR 687978, DOI 10.1007/978-1-4613-8227-0
- C. E. Krukenberg, Covering sets of the integers, Univ. of Illinois Urbana-Champaign, 1971.
- William J. LeVeque, Fundamentals of number theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. MR 0480290
- Štefan Porubský, Results and problems on covering systems of residue classes, Mitt. Math. Sem. Giessen 150 (1981), 85. MR 638657
- H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. MR 1013117
- R. J. Simpson, Exact coverings of the integers by arithmetic progressions, Discrete Math. 59 (1986), no. 1-2, 181–190. MR 837965, DOI 10.1016/0012-365X(86)90079-8
- R. J. Simpson, Disjoint covering systems of congruences, Amer. Math. Monthly 94 (1987), no. 9, 865–868. MR 935844, DOI 10.2307/2322820
- R. J. Simpson and Doron Zeilberger, Necessary conditions for distinct covering systems with square-free moduli, Acta Arith. 59 (1991), no. 1, 59–70. MR 1133237, DOI 10.4064/aa-59-1-59-70
- Sherman K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289–294. MR 93493, DOI 10.1007/BF01343822
- Charles Vanden Eynden, On a problem of Stein concerning infinite covers, Amer. Math. Monthly 99 (1992), no. 4, 355–358. MR 1157227, DOI 10.2307/2324903
- Doron Zeilberger, On a conjecture of R. J. Simpson about exact covering congruences: “Disjoint covering systems of congruences” [Amer. Math. Monthly 94 (1987), no. 9, 865–868; MR0935844 (89b:11006)], Amer. Math. Monthly 96 (1989), no. 3, 243. MR 991873, DOI 10.2307/2325213
Bibliographic Information
- Ethan Lewis
- Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395
- Email: ethan@thales.math.upenn.edu
- Received by editor(s): December 9, 1992
- Received by editor(s) in revised form: April 18, 1994, and August 20, 1994
- Additional Notes: Supported in part by DOE grant P200A20337.
- Communicated by: William W. Adams
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 355-360
- MSC (1991): Primary 11B25; Secondary 11A07
- DOI: https://doi.org/10.1090/S0002-9939-96-03088-2
- MathSciNet review: 1301513