A note on generators of least degree in Gorenstein ideals
HTML articles powered by AMS MathViewer
- by Matthew Miller and Rafael H. Villarreal
- Proc. Amer. Math. Soc. 124 (1996), 377-382
- DOI: https://doi.org/10.1090/S0002-9939-96-03095-X
- PDF | Request permission
Abstract:
Assume $R$ is a polynomial ring over a field and $I$ is a homogeneous Gorenstein ideal of codimension $g\ge 3$ and initial degree $p\ge 2$. We prove that the number of minimal generators $\nu (I_p)$ of $I$ that are of degree $p$ is bounded above by $\nu _0=\binom {p+g-1}{g-1}-\binom {p+g-3}{g-1}$, which is the number of minimal generators of the defining ideal of the extremal Gorenstein algebra of codimension $g$ and initial degree $p$. Further, $I$ is itself extremal if $\nu (I_p)=\nu _0$.References
- W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge University Press, Cambridge, 1993.
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- Juan Elías, Three results on the number of generators of ideals, Comm. Algebra 19 (1991), no. 5, 1387–1408. MR 1111138, DOI 10.1080/00927879108824209
- Juan Elías, Lorenzo Robbiano, and Giuseppe Valla, Number of generators of ideals, Nagoya Math. J. 123 (1991), 39–76. MR 1126182, DOI 10.1017/S0027763000003640
- R. Fröberg and D. Laksov, Compressed algebras, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 121–151. MR 775880, DOI 10.1007/BFb0099360
- Lorenzo Robbiano, Introduction to the theory of Hilbert functions, The Curves Seminar at Queen’s, Vol. VII (Kingston, ON, 1990) Queen’s Papers in Pure and Appl. Math., vol. 85, Queen’s Univ., Kingston, ON, 1990, pp. Exp. No. B, 26. MR 1089895
- M. E. Rossi and G. Valla, Multiplicity and $t$-isomultiple ideals, Nagoya Math. J. 110 (1988), 81–111. MR 945908, DOI 10.1017/S0027763000002889
- Peter Schenzel, Über die freien Auflösungen extremaler Cohen-Macaulay-Ringe, J. Algebra 64 (1980), no. 1, 93–101 (German). MR 575785, DOI 10.1016/0021-8693(80)90136-2
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI 10.1016/0001-8708(78)90045-2
- Richard P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1983. MR 725505, DOI 10.1007/978-1-4899-6752-7
Bibliographic Information
- Matthew Miller
- Affiliation: Department of Mathematics University of South Carolina Columbia, South Carolina 29208.
- Email: miller@math.sc.edu
- Rafael H. Villarreal
- Affiliation: Departamento de Matemáticas Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional Unidad Adolfo López Mateos México, D.F. 07300
- Email: vila@esfm.ipn.mx
- Received by editor(s): June 6, 1994
- Received by editor(s) in revised form: August 25, 1994
- Additional Notes: The first author was supported by the National Science Foundation.
The second author was partially supported by COFAA–IPN, CONACyT and SNI, México - Communicated by: Wolmer V. Vasconcelos
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 377-382
- MSC (1991): Primary 13H10; Secondary 13D40
- DOI: https://doi.org/10.1090/S0002-9939-96-03095-X
- MathSciNet review: 1301519