Sobolev imbedding theorems in borderline cases
HTML articles powered by AMS MathViewer
- by Nicola Fusco, Pierre Louis Lions and Carlo Sbordone
- Proc. Amer. Math. Soc. 124 (1996), 561-565
- DOI: https://doi.org/10.1090/S0002-9939-96-03136-X
- PDF | Request permission
Abstract:
An imbedding theorem is given for functions whose gradient belongs to a class slightly larger than $L^n(\Omega )$, $\Omega \subset \mathbb {R}^n$.References
- A. Alvino, G. Trombetti, and P.-L. Lions, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), no. 2, 185–220. MR 979040, DOI 10.1016/0362-546X(89)90043-6
- Haïm Brezis, Nicola Fusco, and Carlo Sbordone, Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal. 115 (1993), no. 2, 425–431. MR 1234399, DOI 10.1006/jfan.1993.1098
- R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286 (English, with English and French summaries). MR 1225511
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 0473443, DOI 10.1007/978-3-642-96379-7
- Luigi Greco, A remark on the equality $\textrm {det}\, Df=\textrm {Det}\, Df$, Differential Integral Equations 6 (1993), no. 5, 1089–1100. MR 1230483
- Tadeusz Iwaniec and Carlo Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), no. 2, 129–143. MR 1176362, DOI 10.1007/BF00375119
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- Stefan Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math. 412 (1990), 20–34. MR 1078998, DOI 10.1515/crll.1990.412.20
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286, DOI 10.1512/iumj.1968.17.17028
Bibliographic Information
- Nicola Fusco
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy
- Pierre Louis Lions
- Affiliation: CEREMADE, Place du Marèchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
- Carlo Sbordone
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy
- Received by editor(s): July 7, 1993
- Received by editor(s) in revised form: September 12, 1994
- Communicated by: Barbara Lee Keyfitz
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 561-565
- MSC (1991): Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-96-03136-X
- MathSciNet review: 1301025