## Sobolev imbedding theorems in borderline cases

HTML articles powered by AMS MathViewer

- by Nicola Fusco, Pierre Louis Lions and Carlo Sbordone PDF
- Proc. Amer. Math. Soc.
**124**(1996), 561-565 Request permission

## Abstract:

An imbedding theorem is given for functions whose gradient belongs to a class slightly larger than $L^n(\Omega )$, $\Omega \subset \mathbb {R}^n$.## References

- A. Alvino, G. Trombetti, and P.-L. Lions,
*On optimization problems with prescribed rearrangements*, Nonlinear Anal.**13**(1989), no. 2, 185–220. MR**979040**, DOI 10.1016/0362-546X(89)90043-6 - Haïm Brezis, Nicola Fusco, and Carlo Sbordone,
*Integrability for the Jacobian of orientation preserving mappings*, J. Funct. Anal.**115**(1993), no. 2, 425–431. MR**1234399**, DOI 10.1006/jfan.1993.1098 - R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes,
*Compensated compactness and Hardy spaces*, J. Math. Pures Appl. (9)**72**(1993), no. 3, 247–286 (English, with English and French summaries). MR**1225511** - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443**, DOI 10.1007/978-3-642-96379-7 - Luigi Greco,
*A remark on the equality $\textrm {det}\, Df=\textrm {Det}\, Df$*, Differential Integral Equations**6**(1993), no. 5, 1089–1100. MR**1230483** - Tadeusz Iwaniec and Carlo Sbordone,
*On the integrability of the Jacobian under minimal hypotheses*, Arch. Rational Mech. Anal.**119**(1992), no. 2, 129–143. MR**1176362**, DOI 10.1007/BF00375119 - J. Moser,
*A sharp form of an inequality by N. Trudinger*, Indiana Univ. Math. J.**20**(1970/71), 1077–1092. MR**301504**, DOI 10.1512/iumj.1971.20.20101 - Stefan Müller,
*Higher integrability of determinants and weak convergence in $L^1$*, J. Reine Angew. Math.**412**(1990), 20–34. MR**1078998**, DOI 10.1515/crll.1990.412.20 - M. M. Rao and Z. D. Ren,
*Theory of Orlicz spaces*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR**1113700** - Neil S. Trudinger,
*On imbeddings into Orlicz spaces and some applications*, J. Math. Mech.**17**(1967), 473–483. MR**0216286**, DOI 10.1512/iumj.1968.17.17028

## Additional Information

**Nicola Fusco**- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy
**Pierre Louis Lions**- Affiliation: CEREMADE, Place du Marèchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
**Carlo Sbordone**- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy
- Received by editor(s): July 7, 1993
- Received by editor(s) in revised form: September 12, 1994
- Communicated by: Barbara Lee Keyfitz
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 561-565 - MSC (1991): Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-96-03136-X
- MathSciNet review: 1301025