FINITE FACTORIZATION DOMAINS

D.D. ANDERSON AND BERNADETTE MULLINS

(Communicated by Wolmer V. Vasconcelos)

Abstract. An integral domain \(R \) is a finite factorization domain if each nonzero element of \(R \) has only finitely many divisors, up to associates. We show that a Noetherian domain \(R \) is an FFD \(\iff \) for each overring \(R' \) of \(R \) that is a finitely generated \(R \)-module, \(U(R')/U(R) \) is finite. For \(R \) local this is also equivalent to each \(R/[R : R'] \) being finite. We show that a one-dimensional local domain \((R, M)\) is an FFD \(\iff \) either \(R/M \) is finite or \(R \) is a DVR.

In their study of factorization [2], the first author, D.F. Anderson, and M. Zafrullah introduced the notion of a finite factorization domain (FFD). An integral domain \(R \) is an FFD if every nonzero element of \(R \) has only a finite number of nonassociate divisors. The three authors continued their investigation of FFD’s in [3], and F. Halter-Koch studied FFD’s and their monoid analog in [9]. Earlier, A. Grams and H. Warner [8] introduced the related concept of idf-domains. An integral domain \(R \) is an idf-domain (for irreducible-divisor-finite) if each nonzero element of \(R \) has only finitely many nonassociate irreducible divisors.

We adopt the following definitions and notation. For an integral domain \(R \) with quotient field \(K \), \(U(R) \) is the group of units of \(R \) and \(G(R) = K^*/U(R) \), partially ordered by \(aU(R) \leq bU(R) \iff a|b \) in \(R \), is the group of divisibility of \(R \). Clearly \(G(R) \) is order-isomorphic to the group \(\text{Prin}(R) \) of nonzero principal fractional ideals of \(R \) ordered by reverse inclusion. We sometimes call an irreducible element of an integral domain an atom and an integral domain \(R \) is said to be atomic if every nonzero, nonunit element of \(R \) is a finite product of atoms. For an integral domain \(R, R^* = R - \{0\} \) and \(\bar{R} \) is the integral closure of \(R \). For a survey of factorization in integral domains, the reader is referred to [2–3] and for standard definitions and results from commutative ring theory to [6] and [11].

We begin by giving several equivalent conditions for an integral domain to be an FFD.

Theorem 1. For an integral domain \(R \), the following conditions are equivalent:

1. \(R \) is an FFD,
2. every nonzero (principal) ideal of \(R \) is contained in only finitely many principal ideals,
3. for each \(x \in G(R) \) with \(x \geq 0 \), the interval \([0, x]\) is finite,
4. for any infinite collection of distinct principal ideals \(\{(r_\alpha)\} \) of \(R \), \(\bigcap_\alpha (r_\alpha) = 0 \),

Received by the editors September 1, 1994.
1991 Mathematics Subject Classification. Primary 13A05, 13A15, 13E05, 13G05.
Key words and phrases. Finite factorization domain (FFD).
(5) every nonzero element of R has only a finite number of factorizations, up to associates, and
(6) R is an atomic idf-domain.

Proof. Clearly (1)–(5) are equivalent and (1) \Rightarrow (6). (6) \Rightarrow (1) [2, Theorem 5.1].□

We next collect a number of examples and results concerning FFD’s.

Example 1. Let R be an integral domain with $R/(a)$ finite for each $0 \neq a \in R$. Then R is an FFD. In particular, if R is a subring of the integral closure of Z in a finite extension of \mathbb{Q}, R is an FFD. Rings with the property that each proper homomorphic image is finite were studied by K. Levitz and J. Mott [12]. They observed that an integral domain R has the property that R/I is finite if and only if R is an FFD.

Example 2. R is an FFD $\iff R[[X]]$, a set of indeterminates over R, is an FFD [2, Proposition 5.3]. By Example 7 below we can also add the equivalence: $R[[X_a] \cup \{X^{-1}_a\}]$ is an FFD. Later, in Example 10, we will show that R an FFD $\not\Rightarrow R[[X]]$ is an FFD.

Example 3. A Krull domain is an FFD. (This is remarked in the paragraph above Example 2.)

Let us define an integral domain R to be a strong FFD if each nonzero element of R has only finitely many divisors. And we define R to be a strong idf-domain if each nonzero element of R has only finitely many divisors which are either units or atoms. Several characterizations of strong FFD’s are given in Theorem 5.

Example 4. Any subring R of $k[[X_a]]$, where $\{X_a\}$ is any set of indeterminates over k with k either a finite field or \mathbb{Z}, is a strong FFD and hence an FFD. Also, see Theorem 5.

Example 5. Let T be an integral domain of the form $K + M$ where M is a nonzero maximal ideal of T and K is a subfield of T. Let D be a subring of K and $R = D + M$. Then R is an FFD $\iff T$ is an FFD, D is a field, and K^*/D^* is finite [2, Proposition 5.2]. Thus for fields $F_1 \subseteq F_2$, $R = F_1 + XF_2[X]$ (or $F_1 + XF_2[[X]]$) is an FFD $\iff F_2^2/F_1^2$ is finite which by Brandis’ Theorem [5] is equivalent to $F_1 = F_2$ or F_2 is finite.

Example 6. An integral domain R is a bounded factorization domain (BFD) if for each nonzero nonunit x of R, there is a positive integer $N(x)$ such that whenever $x = x_1 \cdots x_n$ as a product of irreducible elements of R, then $n \leq N(x)$. Clearly an FFD is a BFD. A Noetherian domain is always a BFD [2, Proposition 2.2], but $R = \mathbb{R} + X\mathbb{C}[X]$ is not an FFD. Here $\tilde{R} = \mathbb{C}[X]$ is an FFD and $U(\tilde{R}) \cap R = U(R)$, but see Example 8.

Example 7 ([2, Example 5.4]). Let k be a field and $T = \{n + i/n! \mid 0 \leq i \leq n! - 1, \ n = 0, 1, 2, \ldots\}$, an additive submonoid of \mathbb{Q}^+. Then the monoid domain $R = k[X; T]$ is a one-dimensional FFD. However, $R_S = k[X; Q]$ where $S = \{X^t \mid t \in T\}$ and $\tilde{R} = k[X; Q^+]$ are not atomic and hence not FFD’s. However, note that if R is an FFD and $R \subseteq R_S$ is an inert extension (an extension $A \subseteq B$ is an inert extension if whenever $xy \in A$ for nonzero $x, y \in B$, then $xu, yu^{-1} \in A$ for
some \(u \in U(B) \)), then \(R_S \) is an FFD \([3, \text{ Theorem 2.1}]\). An important case where \(R \subseteq R_S \) is inert is when \(S \) is generated by principal primes or \(S \) is a splitting multiplicatively closed subset of \(R \) (i.e., for each \(x \in R \), \(x = as \) where \(a \in R \), \(s \in S \) and \(aR \cap tR = aR \) for all \(t \in S \)). Conversely, if \(S \) is a splitting multiplicatively closed subset of \(R \) generated by principal primes and \(R_S \) is an FFD, then \(R \) is an FFD \([3, \text{ Theorem 3.1}]\).

Example 8. Let \(R \subseteq T \) be a pair of integral domains and let \(K \) be the quotient field of \(R \). If \(U(T) \cap K = U(R) \), then the map \(\varphi_+ : \text{Prin}(R)_+ \to \text{Prin}(T)_+ \) given by \(\varphi_+(xR) = xT \) is injective (the converse is also true), so \(T \) an FFD \(\Rightarrow \) \(R \) is an FFD \([2, \text{ page 17}]\). See Theorem 3 for a generalization.

Example 9 \([3, \text{ Theorem 5.2}]\). Let \(\{R_\alpha\} \) be a directed family of FFD’s such that for each \(\alpha \leq 0 \), \(R_\alpha \subseteq R_\beta \) is an inert extension. Then \(\lim R_\alpha \) is an FFD.

Theorem 2. Let \(R = \bigcap_\alpha R_\alpha \) be a locally finite intersection of FFD’s \(\{R_\alpha\} \). Then \(R \) is an FFD.

Proof. Let \(0 \neq d \in R \) be a nonunit. Let \(\alpha_1, \ldots, \alpha_n \) be the indices for which \(d \) is not a unit in \(R_\alpha \). If \(e \in R \) with \(dR \subseteq eR, \) then \(dR_\alpha \subseteq eR_\alpha \) for each \(\alpha \). Hence \(e \) is a unit in each \(R_\alpha \) except possibly for \(\alpha_1, \ldots, \alpha_n \). Since for each \(R_{\alpha_1}, \ldots, R_{\alpha_n}, dR_{\alpha_1} \) is contained in only finitely many principal ideals (in \(R_{\alpha_1} \)), the same holds for \(dR \). So \(R \) is an FFD. Alternatively, note that \(G(R) \) is order-isomorphic to a subgroup of \(\bigoplus G(R_\alpha) \) (with the cardinal sum order) and apply Theorem 1.

Remark 1. While a locally finite intersection of domains each satisfying ACCP also satisfies ACCP, a locally finite intersection of idf-domains need not be an idf-domain \([8]\).

The next two theorems which generalize \([9, \text{ Theorem 7}]\) are straightforward modifications of its proof.

Theorem 3. Let \(R \subseteq S \) be a pair of integral domains where \(R \) has quotient field \(K \). If \(S \) is an FFD with \((U(S) \cap K^+)/U(R) \) finite, then \(R \) is an FFD.

Proof. Observe that \((U(S) \cap K^+)/U(R) = \ker \hat{\varphi} \) where \(\hat{\varphi} : G(R) \to G(S) \) is given by \(\hat{\varphi}(rU(R)) = rU(S) \). Now \(\ker \hat{\varphi} \) is finite \(\Rightarrow \) each \(\varphi^{-1}(sU(S)) \) is finite \(\Rightarrow \) each \(\varphi^{-1}(s) \) is finite where \(\varphi : \text{Prin}(R) \to \text{Prin}(S) \) is given by \(\varphi(rR) = rS \). Now since \(S \) is an FFD, \(\{xS \mid x \in S, x \in S\} \) is finite. Thus \(\varphi^{-1}(\{xS \mid xS \supseteq aS, x \in S\}) \) (where \(\varphi = \varphi_{\text{Prin}(R)} \)) is finite. But

\[
\{bR \mid bR \supseteq aR, b \in R\} \subseteq \varphi^{-1}(\{xS \mid x \in S, x \in S\})
\]

Thus \(R \) is an FFD.

Theorem 4. Suppose that \(R \subseteq S \) is a pair of integral domains with \([R : R] \neq 0\). Then \(R \) an FFD \(\Rightarrow \) \(U(S)/U(R) \) is finite and \(S \) is an FFD.

Proof. Let \(0 \neq a \in [R : S] \) be a nonunit. For \(u \in U(S), a^2 = (ua)(u^{-1}a) \) and \(ua, u^{-1}a \in [R : S] \subseteq R \). Hence for each \(u \in U(S), a^2R \subseteq uaR \). Since \(R \) is an FFD, the set \(\{uaR \mid u \in U(S)\} \) is finite. So there exist \(u_1, \ldots, u_n \in U(S) \) so that for any \(u \in U(S), uaR = u_i aR \) for some \(i \). Thus there exists \(\lambda \in U(R) \) with \(ua = \lambda u_i a \) and hence \(u = \lambda u_i \). Thus \(U(S)/U(R) = \{u_1U(R), \ldots, u_nU(R)\} \) is finite.
Let $0 \neq s \in S$. Suppose that $ss \subseteq s_0S$, so $s = s_0s'$, where $s, s_0, s' \in S$. Let $0 \neq d \in [R : S]$, so $(ds_0)(ds'_0) = d^2s$. Hence $ds_0R \supseteq d^2sR$. Since R is an FFD, \{ds_0R\} is finite. Hence \{s_0R\} is finite and thus \{s_0S\} is finite. So S is also an FFD. □

Corollary 1. Let R be an FFD and let S be the complete integral closure of R. Then $U(S)/U(R)$ is torsion. In particular, $U(R)/U(R)$ is torsion.

Proof. Let $u \in U(S)$. Then $u \in U(R[u^{-1}])$ and $[R : R[u^{-1}]] \neq 0$. By Theorem 4, $U(R[u^{-1}])/U(R)$ is finite. So $uU(R)$ has finite order in $U(S)/U(R)$. □

Remark 2. Let $F_1 \subseteq F_2$ be a pair of fields where F_1 is an infinite algebraic extension of Z. Then $R = F_1[X]$ is a one-dimensional local domain with $R = F_1[X]$ and $G(R) \cong Z\oplus F_1^*$. Here $U(R)$ is a Krull domain and hence an FFD.

Corollary 2. $R[[X]]$ is an FFD $\Rightarrow R$ is completely integrally closed. Hence for R Noetherian, $R[[X]]$ is an FFD $\Rightarrow R$ is integrally closed.

Proof. Let $\alpha \in K$, the quotient field of R, be almost integral over R, so $[R : R[\alpha]] \neq 0$. Hence $[R[[X]] : R[\alpha][X]] \neq 0$. Thus $R[[X]]$ an FFD $\Rightarrow U(R[\alpha][X])/U(R[[X]])$ is finite. Suppose that $\alpha \notin R$. Then $\{(1+\alpha X^m)U(R[\alpha][X])\}^{\infty}_{m=1}$ is an infinite subset of $U(R[\alpha][X])/U(R[[X]])$. For if $(1+\alpha X^m)U(R[\alpha][X]) = (1+\alpha X^m)U(R[[X]])$ for $0 < m < n$, then $(1+\alpha X^m)(1+\alpha X^{-m})^{-1} \in U(R[\alpha][X]) \subseteq R[[X]]$. But

$$(1+\alpha X^m)(1+\alpha X^{-m})^{-1} = 1 - \alpha X^m + \cdots,$$

a contradiction.

Suppose that R is Noetherian. If R is integrally closed, then R is a Krull domain. Hence $R[[X]]$ is also a Krull domain and hence an FFD. □

Example 10. Let $F_1 \subseteq F_2$ be a pair of finite fields. Then $R = F_1 + YF_2[Y]$ is a nonintegrally closed one-dimensional local domain with finite residue field F_1 and hence is an FFD. Since R is not integrally closed, $R[[X]]$ is not an FFD.

We next use Theorem 4 to characterize strong FFD’s.

Theorem 5. For an integral domain R the following conditions are equivalent.

1. R is a strong FFD.
2. R is an atomic strong idf-domain.
3. R is an FFD and $U(R)$ is finite.
4. For any set of indeterminates $\{X_\alpha\}$ over R, every subring of $R[[X_\alpha]]$ is a strong FFD.
5. Every subring of $R[X]$ is an FFD.

Proof. (1) \Rightarrow (2) Clear. (2) \Rightarrow (3) By Theorem 1, R is an FFD. Since 1 has only finitely many unit factors, $U(R)$ is finite. (3) \Rightarrow (1) Clear. (3) \Rightarrow (4) $R[[X_\alpha]]$ is a FFD (Example 2) and $U(R[[X_\alpha]]) = U(R)$ is finite. Let S be a subring of $R[[X_\alpha]]$. Since $0 \neq f \in S$ has only finitely many factors in $R[[X_\alpha]]$ by (1) \Rightarrow (3), f certainly has only finitely many factors in S. So S is a strong FFD. (4) \Rightarrow (5) Clear. (5) \Rightarrow (3) R is a subring of $R[X]$ and hence an FFD. Let R_0 be the prime subring of R and let $S = R_0 + XR[X]$. By hypothesis, S is an FFD. Now $X \in [S : R[X]]$, so by Theorem 4, $U(R[X])/U(S)$ is finite. But $U(R[X]) = U(R)$
and $U(S) = U(R_0)$, so $U(R)/U(R_0)$ is finite. Since $U(R_0)$ is finite, $U(R)$ is itself finite. □

Remark 3. (1) Let $R = \bigcup_{n=1}^{\infty} GF(p^n)$, p a prime. Then R is an infinite field with every proper subring a finite field and hence a strong FFD. But R is not a strong FFD. Thus in Theorem 5 we cannot add the condition: every subring of R is an FFD. This example also shows that a direct limit of strong FFD’s, while an FFD, need not be a strong FFD.

(2) Let R be a subring of the integral closure of \mathbb{Z} in a finite field extension. By Example 1, every subring of R is an FFD. However, since $U(R)$ may be infinite (e.g., $R = \mathbb{Z}[\sqrt{2}]$), R need not be a strong FFD.

We next characterize Noetherian FFD’s.

Theorem 6. For a Noetherian integral domain R, the following conditions are equivalent.

1. R is an FFD.
2. If S is an overring of R with S a finitely generated R-module, then $U(S)/U(R)$ is finite.
3. There is an FFD overring R' of R which is integral over R such that if S is an overring of R with $R \subseteq S \subseteq R'$ where S is a finitely generated R-module, then $U(S)/U(R)$ is finite.

Proof. (1) ⇒ (2) Theorem 4. (2) ⇒ (3) Take $R' = R$, the integral closure of R. Now R is a Krull domain and hence an FFD. (3) ⇒ (1) Suppose that R is not an FFD. Then there exist nonzero $d_1, d_2, \ldots \in R$ with $dR \subseteq d_nR$ such that the d_nR are distinct principal ideals of R. Now $d_1R' \subseteq d_nR'$ and R' is an FFD, so the set $\{d_nR'\}$ is finite. Re-indexing, if necessary, we can assume that $d_1R' = d_nR'$ for each $n \geq 1$. Now $\{d_n\}$ is a finitely generated ideal of R, say $\{d_n\} = (d_1, \ldots, d_m)$. So each $d_n = d_1^{\alpha_1} \cdots d_m^{\alpha_m}$. Now $d_1R' = d_nR'$ gives that each $d_n^{\alpha_n}$ is a unit in R'. Since $S = R\left[\frac{d_1}{d_1}, \ldots, \frac{d_m}{d_1}\right]$ is a finitely generated R-module, $U(S)/U(R)$ is finite. But $\frac{d_n^{\alpha_n}}{d_1^{\alpha_1}} \in U(S)$ (since $\frac{d_n^{\alpha_n}}{d_1^{\alpha_1}} \in U(R')$) and if $\frac{d_n^{\alpha_n}}{d_1^{\alpha_1}}U(R) = \frac{d_n^{\alpha_n}}{d_1^{\alpha_1}}U(R)$, then $d_nU(R) = d_nU(R)$ and hence $d_nR = d_nR$, a contradiction. □

Corollary 3 ([9, Theorem 7]). Let R be a Noetherian domain with \bar{R} a finitely generated R-module. Then R is an FFD $\iff U(R)/U(R)$ is finite.

Theorem 6 is actually stronger than Corollary 3 in the sense that a Noetherian FFD R need not have \bar{R} a finitely generated R-module. The existence of one-dimensional local domains (R, M) with R/M finite and \bar{R} not a finitely generated R-module follows from [10, Corollary 1.27]. W. Heinzer also communicated to us that [12, Example 2.9] can be modified as follows to yield an appropriate example.

Example 11. (A one-dimensional local FFD (R, M) with \bar{R} not a finitely generated R-module.) Let k be a finite field of characteristic p and let $Y \in X[[X]]$ with X, Y algebraically independent over k. Let $R = V[Y]$ where $V = k[[X]] \cap k(X, Y^p) \subseteq W = k[[X]] \cap k(X, Y)$. Here V and W are DVR’s with quotient fields $k(X, Y^p)$ and $k(X, Y)$, respectively, and $k(X, Y^p)$ is purely inseparable over $k(X, Y)$ of degree p. So W is the integral closure of V in $k(X, Y)$, R has quotient field $k(X, Y)$, and $\bar{R} = W$. By the Krull-Akizuki Theorem, we see that R is a one-dimensional local domain, say with maximal ideal M, and $R/M = k$. Hence
(\(R, M\)) is an FFD. However, \(W\) is not a finitely generated \(R\)-module. For if \(W\) were a finitely generated \(R\)-module, then \(W\) would be a finitely generated \(V\)-module. But then since \(W = V + XW\), we get \(W = V\) by Nakayama’s Lemma, a contradiction. Note that here \(G(R) \cong G(W) \oplus (U(W)/U(R))\) where \(G(W) \cong \mathbb{Z}\) and \(U(W)/U(R)\) is a countably infinite elementary \(p\)-primary abelian group. Thus \(U(W)/U(R)\) is a DVR.

We have observed that a one-dimensional local domain \((R, M)\) with \(R/M\) finite is an FFD. This raises the question of when is a one-dimensional local domain \((R, M)\) with \(R/M\) infinite an FFD? It follows from our next theorem that \(R\) must be a DVR.

Theorem 7. Let \((R, M)\) be a quasilocal domain and let \(R'\) be an overring of \(R\) that is a finitely generated \(R\)-module. Then \(U(R')/U(R)\) is finite if and only if \(R/[R : R']\) is finite. Hence if \(R/M\) is finite, \(U(R')/U(R)\) is finite if and only if \(R \cong R'\).

Proof. (\(\Rightarrow\)) Suppose that \(R/[R : R']\) is finite. If \([R : R'] = R, R = R'\) and certainly \(U(R')/U(R)\) is finite. So suppose that \([R : R'] \neq R\). By [1, Lemma 2], \(U(R')/U(R) \cong U(R'/[R : R'])/U(R/[R : R'])\) which is finite since \(R'/[R : R']\) is finite being a finitely generated \(R/[R : R']\)-module.

(\(\Leftarrow\)) Suppose that \(U(R')/U(R)\) is finite. First suppose that \(R/M\) is finite. The proof of [1, Theorem 1] shows that \([R : R']\) is finite. Next suppose that \(R/M\) is infinite. Let \(Q_1, \ldots, Q_n\) be the maximal ideals of \(R'\). As in the proof of [1, Theorem 1] (with \(R'\) playing the role of \(D\)), \((Q_1 \cap \cdots \cap Q_n)/M\) has finite length as an \(R\)-module. The equation \(\bar{q} = (1 + m)\bar{t}_i\) ([1, Theorem 1, line 13 of proof]) shows that the socle \(\text{Soc}((Q_1 \cap \cdots \cap Q_n)/M)\) is finite. (For \((1 + m)\bar{t}_i = \bar{t}_i\) since \(m\bar{t}_i = 0\) for \(i\) in the socle.) Since \(R/M\) is infinite, \(\text{Soc}((Q_1 \cap \cdots \cap Q_n)/M) = M/M\), so \(Q_1 \cap \cdots \cap Q_n = M\). So \(M \subseteq [R : R']\). Suppose that \([R : R'] \neq R\). Then by [1, Lemma 2], \(U(R'/Q_1 \cap \cdots \cap Q_n)/U(R/M)\) is finite. With a change of notation, put \(R/M = K\) and \(R'/Q_1 = K_i\). So \(K_1 \times \cdots \times K_n\) is a vector space over \(K\) and there exist \(t_i \in K_1^i \times \cdots \times K_n\), \(1 \leq i \leq l\), so that every element of \(K_1^i \times \cdots \times K_n\) has the form \(u t_i\) for some \(u \in K^*\). Let \(\{s_j\}\) be the set of \(2^n\) elements of \(K_1 \times \cdots \times K_n\) where each coordinate is 0 or 1. Then \(K_1 \times \cdots \times K_n = \bigcup_i K t_i s_j\) a finite union of one-dimensional subspaces. Since \(K\) is infinite, \(R/M = K = K_1 \times \cdots \times K_n = R'/Q_1 \cap \cdots \cap Q_n = R'/M\). So \(R \cong R'\). □

Corollary 4. Let \((R, M)\) be a quasilocal FFD with \(R/M\) infinite. Then \(R\) is integrally closed. Thus a local domain \((R, M)\) with \(R/M\) infinite is an FFD \(\Leftrightarrow R\) is integrally closed.

Proof. Combine Theorems 4 and 7. □

Corollary 5. Let \((R, M)\) be a local domain. Then the following conditions are equivalent.

1. \(R\) is an FFD.
2. If \(R'\) is an overring of \(R\) which is a finitely generated \(R\)-module, then \(U(R')/U(R)\) is finite.
3. If \(R'\) is an overring of \(R\) which is a finitely generated \(R\) module, then \(R/[R : R']\) is finite.
4. Either \(R\) is integrally closed or \(R/M\) is finite and for each proper overring \(R'\) of \(R\) with \([R : R'] \neq 0, [R : R']\) is \(M\)-primary.
(5) For each simple integral overring \(R[\alpha] \) of \(R \), \(U(R[\alpha])/U(R) \) is finite.

(6) Either \(R \) is integrally closed or \(R/M \) is finite and for each simple proper
integral overring \(R[\alpha] \) of \(R \), \([R : R[\alpha]] \) is \(M \)-primary.

(7) For each simple integral overring \(R[\alpha] \) of \(R \), \(R/[R : R[\alpha]] \) is finite.

Proof. (1) \(\Leftrightarrow \) (2) Theorem 6. (2) \(\Leftrightarrow \) (3) and (5) \(\Leftrightarrow \) (7) Theorem 7. (3) \(\Leftrightarrow \) (4)

Note that for \(R/M \) finite, \(R/[R : R'] \) is finite \(\Leftrightarrow \) \(R = R' \) or \([R : R'] \) is \(M \)-primary.
The same proof shows that (6) \(\Leftrightarrow \) (7). (4) \(\Rightarrow \) (6) Clear. (6) \(\Rightarrow \) (4). Suppose that \(R \) is not integrally closed, so \(R/M \) is finite. Let \(R' = R[\alpha_1, \ldots, \alpha_n] \) be a finitely generated \(R \)-module. By hypothesis, for each \(\alpha_i \), there is an \(M \)-primary ideal \(M_i \) with \(M_iR[\alpha_i] \subseteq R \). Then \(M_1 \cdots M_n \) is \(M \)-primary and \(M_1 \cdots M_nR[\alpha_1, \ldots, \alpha_n] \subseteq R \).

Corollary 6. A one-dimensional semilocal domain \(R \) is an FFD \(\Leftrightarrow \) for each
maximal ideal \(M \) of \(R \) with \(R/M \) infinite, \(R_M \) is a DVR.

Proof. Let \(M_1, \ldots, M_n \) be the maximal ideals of \(R \). Since \(G(R) \) is order-isomorphic to \(G(R_{M_1}) \oplus \cdots \oplus G(R_{M_n}) \) (in the cardinal sum order) [4, Theorem 3.2], \(R \) is an
FFD \(\Leftrightarrow \) each \(R_{M_i} \) is an FFD. Now \(R_{M_i} \) has residue field \(R/M_i \). So \(R_{M_i} \) is an FFD
\(\Leftrightarrow \) either \(R/M_i \) is finite (Example 1) or \(R_{M_i} \) is a DVR.

Remark 4. Suppose in Example 7, we take \(k \) to be an infinite field. Then \(R = k[X; T] \) is a one-dimensional FFD with each residue field infinite, but \(R \) is not integrally closed and \(R \) is not an FFD.

From our previous results, it seems reasonable to conjecture that a Noetherian domain is an FFD if and only if \(R = \bigcap \{R_P \mid \text{ht } P = 1 \} \) where the intersection is locally finite and each \(R_P \) is a one-dimensional FFD. While the implication \((\Rightarrow) \) does follow from Theorem 2, we show that \((\Leftarrow) \) need not be true.

Example 12. Let \((R, M) \) be a one-dimensional local domain with \(R/M \) finite
that is not a DVR. Then \(R[X] \) is an FFD. Since \(R[X] \) is Cohen-Macaulay, \(R[X] = \bigcap \{R[X]_P \mid \text{ht } P = 1 \} \), and the intersection is of course locally finite. Now if \(P \) is a
height-one prime of \(R[X] \) with \(P \cap R = 0 \), then \(R[X]_P \) is a DVR. But for \(P = M[X] \),
\(R[X]_{M[X]} = R(X) \) is a one-dimensional local domain with infinite residue field that
is not a DVR. Hence \(R(X) \) is not an FFD.

References

Math. Soc. 112 (1991), 613-618. MR 92c:13001

Appl. Algebra 69 (1990), 1–19. MR 92b:13028

number of irreducible elements, J. Algebra 148 (1992), 17–41. MR 93e:13041

5. A. Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965),
71–73. MR 36:1124

7. B. Glastad and J.L. Mott, Finitely generated groups of divisibility, Contemp. Math. 8 (1982),
231–247. MR 83b:13001

42 (1975), 271–284. MR 51:12836

MR 92k:20121

Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

Current address, B. Mullins: Department of Mathematics, Youngstown State University, Youngstown, Ohio 44555

E-mail address: dan-anderson@uiowa.edu

E-mail address: bmullins@math.ysu.edu