A note on quasi-Frobenius rings

Authors:
Dinh Van Huynh and Ngo Si Tung

Journal:
Proc. Amer. Math. Soc. **124** (1996), 371-375

MSC (1991):
Primary 16L60, 16D50

DOI:
https://doi.org/10.1090/S0002-9939-96-03303-5

MathSciNet review:
1322929

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a semiperfect ring is quasi-Frobenius if and only if every closed submodule of is non-small, where denotes the direct sum of copies of the right -module and is the first infinite ordinal.

**1**F.W. Anderson and K.R. Fuller,*Rings and Categories of Modules*, Springer-Verlag, Berlin-New York, 1974, MR**54:5281**.**2**A.W. Chatters and C.R. Hajarnavis,*Rings in which every complement right ideal is a direct summand*, Quart. J. Math. Oxford**28**(1977), 61--80, MR**55:10519**.**3**J. Clark and D.V. Huynh,*When is a self-injective semiperfect ring quasi-Frobenius?*, J. Algebra**164**(1994), 531--542, MR**95d:16006**.**4**C. Faith,*Algebra II: Ring Theory*, Springer-Verlag, Berlin - New York, 1976.**5**C. Faith,*When self-injective rings are QF: A report on a problem*, Centre Recerca Matematica Institut d'Estudis Catalans, (Spain), 1990.**6**K.R. Goodearl,*Singular torsion and splitting properties*, Mem. Amer. Math. Soc.**124**(1972), MR**49:5090**.**7**M. Harada,*Non-small modules and non-cosmall modules*, Proc. of the 1978 Antw. Conf. Mercel Dekker, pp. (669--689).**8**D.V. Huynh,*A right countably sigma-CS ring with ACC or DCC on projective principal right ideals is left artinian and QF-3*, Trans. Amer. Math. Soc. (to appear).**9**F. Kasch,*Moduln und Ringe*, Teubner, Stutgart, 1977, MR**55:2971**.**10**S.H. Mohamed and B.J. Müller,*Continuous and Discrete Modules*, London Math. Soc. Lecture Note Series 147, Cambridge Univ. Press, 1990, MR**92b:16009**.**11**K. Oshiro,*Lifting modules, extending modules and their applications to QF-rings*, Hokkaido Math. J.**13**(1984), 310--338, MR**86b:16008a**.**12**B.L. Osofsky,*A generalization of quasi-Frobenius rings*, J. Algebra**4**(1966), 373--387, MR**34:4305**.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16L60,
16D50

Retrieve articles in all journals with MSC (1991): 16L60, 16D50

Additional Information

**Dinh Van Huynh**

Affiliation:
Institute of Mathematics, P. O. Box 631 Boho, Hanoi, Vietnam

**Ngo Si Tung**

Affiliation:
Institute of Mathematics, P. O. Box 631 Boho, Hanoi, Vietnam

Email:
huynh@math.ohio-state.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03303-5

Keywords:
Closed submodules,
small modules,
non-small modules,
quasi-\linebreak Frobenius rings

Received by editor(s):
August 22, 1994

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 1996
American Mathematical Society