Comparative probability on von Neumann algebras
HTML articles powered by AMS MathViewer
- by Simba A. Mutangadura
- Proc. Amer. Math. Soc. 124 (1996), 907-918
- DOI: https://doi.org/10.1090/S0002-9939-96-03097-3
- PDF | Request permission
Abstract:
We continue here the study begun in earlier papers on implementation of comparative probability by states. Let $\mathcal {A}$ be a von Neumann algebra on a Hilbert space $\mathcal {H}$ and let $\mathcal {P}(\mathcal {A})$ denote the projections of $\mathcal {A}$. A comparative probability (CP) on $\mathcal {A}$ (or more correctly on $\mathcal {P} (\mathcal {A}))$ is a preorder $\preceq$ on $\mathcal {P}(\mathcal {A})$ satisfying:
[] $0\preceq P\forall P\in \mathcal {P}(\mathcal {A})$ with $Q\npreceq 0$ for some $Q\in \mathcal {P}(\mathcal {A})$.
[] If $P,Q\in \mathcal {P}(\mathcal {A})$, then either $P\preceq Q$ or $Q\preceq P$.
[] If $P$, $Q$ and $R$ are all in $\mathcal {P}(\mathcal {A})$ and $P\perp R$, $Q\perp R$, then $P\preceq Q\Leftrightarrow P+R\preceq Q+R$.
A state $\omega$ on $\mathcal {A}$ is said to implement a $\text {CP }\preceq$ on $\mathcal {A}$ if for $P,Q\in \mathcal {P}(\mathcal {A})$, $P\preceq Q\Leftrightarrow \omega (P)\le \omega (Q)$. In this paper, we examine the conditions for implementability of a CP on a general von Neumann algebra (as opposed to only type I factors). A crucial tool used here, as well as in earlier results, is the interval topology generated on $\mathcal {P}(\mathcal {A})$ by $\preceq$. A $\text {CP }\preceq$ will be termed continuous in a given topology on $\mathcal {A}$ if the interval topology generated by $\preceq$ is weaker than the topology induced on $\mathcal {P}(\mathcal {A})$ by the given topology. We show that uniform continuity of a comparative probability is necessary and sufficient if the von Neumann algebra has no finite direct summand. For implementation by normal states, weak continuity is sufficient and necessary if the von Neumann algebra has no finite direct summand of type I. We arrive at these results by constructing an appropriate additive measure from the CP.
References
- Huzihiro Araki, Mi-soo Bae Smith, and Larry Smith, On the homotopical significance of the type of von Neumann algebra factors, Comm. Math. Phys. 22 (1971), 71–88. MR 288587
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Andrew M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885–893. MR 0096113, DOI 10.1512/iumj.1957.6.56050
- J. Gunson, Physical states on quantum logics. I, Ann. Inst. H. Poincaré Sect. A (N.S.) 17 (1972), 295–311 (English, with French summary). MR 336364
- Stanisław Goldstein and Adam Paszkiewicz, Comparison of states and Darboux-type properties in von Neumann algebras, Math. Scand. 63 (1988), no. 2, 220–232. MR 1018812, DOI 10.7146/math.scand.a-12236
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- G. Kalmbach, Measures and Hilbert lattices, World Scientific Publishing Co., Singapore, 1986. MR 867884, DOI 10.1142/0206
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Shûichirô Maeda, Probability measures on projections in von Neumann algebras, Rev. Math. Phys. 1 (1989), no. 2-3, 235–290. MR 1070091, DOI 10.1142/S0129055X89000122
- Simba A. Mutangadura, Implementation of comparative probability by normal states. Infinite-dimensional case, Comm. Math. Phys. 132 (1990), no. 3, 581–592. MR 1069838
- Simba A. Mutangadura, Implementation of comparative probability by states, Publ. Res. Inst. Math. Sci. 28 (1992), no. 2, 315–327. MR 1152760, DOI 10.2977/prims/1195168666
- —, Comparative probability on the $C^*$ algebra of compact operators, Quaestiones Math. 18 (1995), 155–166.
- Wilhelm Ochs, Gleason measures and quantum comparative probability, Quantum probability and applications, II (Heidelberg, 1984) Lecture Notes in Math., vol. 1136, Springer, Berlin, 1985, pp. 388–396. MR 819519, DOI 10.1007/BFb0074487
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Jaroslav Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), no. 2, 177–183. MR 541972, DOI 10.1112/blms/11.2.177
Bibliographic Information
- Simba A. Mutangadura
- Email: mutanga@zimbix.uz.zw
- Received by editor(s): July 23, 1993
- Received by editor(s) in revised form: August 30, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 907-918
- MSC (1991): Primary 81P99
- DOI: https://doi.org/10.1090/S0002-9939-96-03097-3
- MathSciNet review: 1301521