The algebra of almost periodic functions has infinite topological stable rank
HTML articles powered by AMS MathViewer
- by Fernando Daniel Suárez
- Proc. Amer. Math. Soc. 124 (1996), 873-876
- DOI: https://doi.org/10.1090/S0002-9939-96-03200-5
- PDF | Request permission
Abstract:
We show that if $A$ is the uniform algebra of almost periodic functions, then the set $U_n(A)=\{(a_1,\dotsc ,a_n)\in A^n\colon \sum _{1\leq j\leq n}Aa_j=A\}$ cannot be dense in $A^n$ for any positive integer $n$.References
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Richard H. Herman and Leonid N. Vaserstein, The stable range of $C^{\ast }$-algebras, Invent. Math. 77 (1984), no. 3, 553–555. MR 759256, DOI 10.1007/BF01388839
- Jun-iti Nagata, Modern dimension theory, Revised edition, Sigma Series in Pure Mathematics, vol. 2, Heldermann Verlag, Berlin, 1983. MR 715431
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
Bibliographic Information
- Fernando Daniel Suárez
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Instituto Argentino de Matemática, Vio monte 1636-1$^{\text o}$ Cpo.-1$^{\text o}$ Piso, 1055 Buenos Aires, Argentina
- Received by editor(s): July 12, 1994
- Received by editor(s) in revised form: September 22, 1994
- Additional Notes: The author is a Fellow of the John Simon Guggenheim Memorial Foundation
- Communicated by: Dale Alspach
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 873-876
- MSC (1991): Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-96-03200-5
- MathSciNet review: 1307566