$C^*$-algebras of proper foliations
HTML articles powered by AMS MathViewer
- by A. Candel
- Proc. Amer. Math. Soc. 124 (1996), 899-905
- DOI: https://doi.org/10.1090/S0002-9939-96-03213-3
- PDF | Request permission
Abstract:
We study the $C^*$-algebras of proper foliations. In case of finite depth they are described by a tower of exact sequences. We conclude with remarks about foliations almost without holonomy and AF-embeddability.References
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- A. Connes, A survey of foliations and operator algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628. MR 679730
- John Cantwell and Lawrence Conlon, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc. 265 (1981), no. 1, 181–209. MR 607116, DOI 10.1090/S0002-9947-1981-0607116-8
- J. Cantwell and L. Conlon, Tischler fibrations of open, foliated sets, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 2, vi, 113–135 (English, with French summary). MR 617243
- Thierry Fack and Xiaolu Wang, The $C^*$-algebras of Reeb foliations are not AF-embeddable, Proc. Amer. Math. Soc. 108 (1990), no. 4, 941–946. MR 1002156, DOI 10.1090/S0002-9939-1990-1002156-2
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150. MR 587371
- Toshikazu Natsume, The $C^\ast$-algebras of codimension one foliations without holonomy, Math. Scand. 56 (1985), no. 1, 96–104. MR 807506, DOI 10.7146/math.scand.a-12090
- Mihai V. Pimsner, Embedding some transformation group $C^{\ast }$-algebras into AF-algebras, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 613–626. MR 753927, DOI 10.1017/S0143385700002182
- Anne Marie Torpe, $K$-theory for the leaf space of foliations by Reeb components, J. Funct. Anal. 61 (1985), no. 1, 15–71. MR 779738, DOI 10.1016/0022-1236(85)90038-2
Bibliographic Information
- A. Candel
- Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
- Email: candel@math.uchicago.edu
- Received by editor(s): October 3, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 899-905
- MSC (1991): Primary 46L55; Secondary 57R30, 58F09
- DOI: https://doi.org/10.1090/S0002-9939-96-03213-3
- MathSciNet review: 1307500