SHARP MAXIMAL INEQUALITIES FOR STOCHASTIC INTEGRALS IN WHICH THE INTEGRATOR IS A SUBMARTINGALE

WILLIAM HAMMACK

(Communicated by Richard T. Durrett)

Abstract. We obtain sharp maximal inequalities for strong subordinates of real-valued submartingales. Analogous inequalities also hold for stochastic integrals in which the integrator is a submartingale. The impossibility of general moment inequalities is also demonstrated.

1. Introduction

Let \((\Omega, \mathcal{F}, P)\) be a complete probability space with a right-continuous filtration \((\mathcal{F}_t)_{t \geq 0}\) where \(\mathcal{F}_0\) contains all \(P\)-null sets. Suppose \(X\) is an adapted right-continuous real-valued submartingale with left limits and \(H\) is a predictable process with values in the closed unit ball of \(\mathbb{R}^\nu\), where \(\nu\) is a positive integer. Define an adapted right-continuous process \(Y\) with left limits by

\[Y_t = H_0X_0 + \int_{[0,t]} H_s dX_s. \]

We will compare the size of \(Y\) with that of \(X\) by finding constants \(\beta\) such that for all \(\lambda > 0\),

\[\lambda P(Y^* \geq \lambda) \leq \beta \|X\|_1 \]

where \(\|X\|_1 = \sup_{t \geq 0} \|X_t\|_1\) and \(Y^* = \sup_{t \geq 0} |Y_t|\). In this paper we will denote the Euclidean norm of \(y \in \mathbb{R}^\nu\) by \(|y|\) and the inner product of \(y, k \in \mathbb{R}^\nu\) by \(y \cdot k\).

If we restrict \(X\) to the class of martingales, it is known that the best constant satisfying (1.1) is \(\beta = 2\) \([2, 3]\). By the best constant we mean that for any \(\beta < 2\) there exist a martingale \(X\), a predictable process \(H\), and a \(\lambda > 0\) such that \(\lambda P(Y^* \geq \lambda) > \beta \|X\|_1\). It is also known \([5]\) that if we restrict \(X\) to the class of nonnegative submartingales, then the best constant satisfying (1.1) is \(\beta = 3\).

In this paper we will show that for the class of real-valued submartingales, the best constant in (1.1) is \(\beta = 6\). To do this we shall first prove the analogous inequality and more for discrete-time submartingales. In the last section of this
paper we shall show that there are no moment inequalities of the form \(\|Y\|_p \leq \beta \|X\|_p \) where \(1 < p < \infty \) and \(\beta \) is finite and depends only on \(p \). In fact, we shall show that for any \(p \in [1, \infty) \), there is no finite \(\beta \) such that \(\|Y\|_1 \leq \beta \|X\|_p \). For the case \(p = \infty \), see [7] where it is shown that if \(\|X\|_\infty = 1 \), then there is a constant \(\gamma \) such that for \(\lambda > 4 \), \(P(Y^* \geq \lambda) \leq \gamma \exp(-\lambda/4) \), so, for any \(r \in [1, \infty) \), \(\|Y\|_r \) is bounded by some constant depending only on \(r \).

2. A MAXIMAL INEQUALITY FOR SUBMARTINGALES

Let \(f_0, f_1, \ldots \) be a real-valued submartingale relative to a filtration \((\mathcal{F}_n)_{n \geq 0} \) on a probability space \((\Omega, \mathcal{F}, P)\) with difference sequence \(d_0, d_1, \ldots \) and \(g_0, g_1, \ldots \) an \(\mathbb{R}^\nu \)-valued process adapted to \((\mathcal{F}_n)_{n \geq 0} \) with difference sequence \(e_0, e_1, \ldots \), where \(\nu \) is a positive integer. We say that \(g \) is strongly subordinate to \(f \) if \(g \) is both differentially subordinate and conditionally differentially subordinate to \(f \), i.e. for all \(n \geq 0 \), \(|e_n| \leq |d_n| \) and \(|E(e_n | \mathcal{F}_n)| \leq |E(d_{n+1} | \mathcal{F}_n)| \). Note that if for \(k \geq 0 \), \(e_k = h_k d_k \) where \(h_k : \Omega \rightarrow [-1, 1] \) is \(\mathcal{F}_{k-1} \)-measurable, then \(g \) is strongly subordinate to \(f \). In particular, if \(g \) is a \(\pm 1 \)-transform of \(f \), i.e. \(e_k = \epsilon_k d_k \) where \(\epsilon_k \in \{-1, 1\} \), then \(g \) is strongly subordinate to \(f \).

Theorem 2.1. If \(f = (f_n)_{n \geq 0} \) is a submartingale relative to a filtration \((\mathcal{F}_n)_{n \geq 0} \) and \(g = (g_n)_{n \geq 0} \) is strongly subordinate to \(f \), then for all \(\lambda > 0 \),

\[
\lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 4 \sup_{n \geq 0} E f_n^+ - 2E f_0
\]

where \(g^* = \sup_{n \geq 0} |g_n| \).

Remarks. If \(f \) is a martingale, then \(E f_n^+ \) and \(E f_n^- \) are nondecreasing sequences. It then follows from \(E f_0 = E f_n^+ - E f_n^- \) that \(\|f\|_1 = 2 \sup_{n \geq 0} E f_n^+ - E f_0 \), where \(\|f\|_1 = \sup_{n \geq 0} \|f_n\|_1 \). Thus in the martingale case, (2.1) implies that

\[
\lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 2 \|f\|_1
\]

which is Theorem 4.1 of [4]. If \(f \) is a nonnegative supermartingale, (2.1) implies

\[
\lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 2E f_0
\]

which is Theorem 8.1 of [5]. Both results are shown to be sharp in the articles quoted. If \(f \) is a nonnegative submartingale with \(f_0 = 0 \), the resulting inequality is not sharp in the case \(f_0 = 0 \), as can be seen from Theorem 4.1 of [5] which shows in this case

\[
\lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 3 \|f\|_1
\]

Proof. We will assume \(\|f\|_1 \) is finite. This is equivalent to saying \(\sup_{n \geq 0} E f_n^+ \) is finite, as for all \(n \geq 0 \), \(E f_n^+ \leq \|f_n\|_1 \leq 2E f_n^+ - E f_0 \). The first inequality is obvious, the second follows from \(E f_0 \leq E f_n = E f_n^+ - E f_n^- \).

To show (2.1), it suffices to show that for \(n \geq 0 \),

\[
\lambda P(|f_n| + |g_n| \geq \lambda) \leq 4E f_n^+ - 2E f_0
\]
Then U can be verified by checking the various cases:

$$\lambda P(\sup_{m\leq n}(|f_m| + |g_m|) \geq \lambda) = \lambda P(|f_{\tau \wedge n}| + |g_{\tau \wedge n}| \geq \lambda) \leq 4Ef^+_{\tau \wedge n} - 2E f_0.$$

Since $(f^+_n)_{n \geq 0}$ is a submartingale, it follows by Doob’s optional sampling theorem that $E f^+_{\tau \wedge n} \leq Ef^+_0$, thus implying (2.1).

By dividing by λ throughout in (2.2), we may assume $\lambda = 1$. Using the methods developed by Burkholder [2], we define V on $\mathbb{R} \times \mathbb{R}^\nu$ by

$$V(x, y) = \begin{cases} 1 - 4x^+, & \text{if } |x| + |y| \geq 1, \\ -4x^+, & \text{if } |x| + |y| < 1. \end{cases}$$

Then (2.2) is equivalent to $E V(f_u, g_u) \leq -2E f_0$. Define U on $\mathbb{R} \times \mathbb{R}^\nu$ by

$$U(x, y) = \begin{cases} 1 - 4x^+, & \text{if } |x| + |y| \geq 1, \\ |y|^2 - x^2 - 2x, & \text{if } |x| + |y| < 1. \end{cases}$$

Then $V \leq U$ (in the case of $|x| + |y| < 1$ this follows from $-4x^+ \leq -x^2 - 2x$ for $|x| < 1$) and $U(f_u, g_u) \leq -2f_0$ (recall that by assumption $|f_0| \geq |g_0|$).

Thus $E V(f_u, g_u) \leq E U(f_u, g_u)$ and $E U(f_u, g_u) \leq -2E f_0$. To show (2.2), it will suffice to show that for $1 \leq j \leq n$,

$$EU(f_j, g_j) \leq EU(f_{j-1}, g_{j-1}).$$

Define ϕ, ψ on $\mathbb{R} \times \mathbb{R}^\nu$ by

$$\phi(x, y) = \begin{cases} -4, & \text{if } |x| + |y| \geq 1 \text{ and } x \geq 0, \\ 0, & \text{if } |x| + |y| \geq 1 \text{ and } x < 0, \\ -2x - 2, & \text{if } |x| + |y| < 1, \end{cases}$$

$$\psi(x, y) = \begin{cases} 0, & \text{if } |x| + |y| \geq 1, \\ 2y, & \text{if } |x| + |y| < 1. \end{cases}$$

Then $U_x(x, y) = \phi(x, y)$ and $U_y(x, y) = \psi(x, y)$ for $|x| + |y| \neq 1$, $y \neq 0$, and $x \neq 0$ where $U_x(x, y)$ and $U_y(x, y)$ are the partials of U with respect to x and y respectively. Note that $|\psi| \leq -\phi$.

Claim: Given $h \in \mathbb{R}$ and $k \in \mathbb{R}^\nu$ with $|k| \leq |h|$, then for all $x \in \mathbb{R}$ and $y \in \mathbb{R}^\nu$

$$U(x + h, y + k) \leq U(x, y) + \phi(x, y)h + \psi(x, y) \cdot k.$$

This can be verified by checking the various cases:

For $|x| + |y| \geq 1$ and $x \geq 0$, we need to show $U(x + h, y + k) \leq 1 - 4(x + h)$. For $|x + h| + |y + k| \geq 1$ this is clear. For $|x + h| + |y + k| < 1$ it follows from $|y + k|^2 < (1 - |x + h|)^2 \leq 1 - 2(x + h) + (x + h)^2$.

For $|x| + |y| \geq 1$ and $x < 0$, we need to show $U(x + h, y + k) \leq 1$. However $U(x, y) \leq 1$ for all x, y, this being obvious for $|x| + |y| \geq 1$. In the region $|x| + |y| < 1$, since $U_x(x, y) \leq 0$, it follows that $U(x, y) \leq |y|^2 - (|y| - 1)^2 - 2(|y| - 1) = 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For the case $|x| + |y| < 1$, (2.4) is equivalent to showing
\[
(2.5) \quad U(x + h, y + k) \leq |y + k|^2 - (x + h)^2 - 2(x + h) - |k|^2 + h^2.
\]
For $|x + h| + |y + k| < 1$, this follows from $|k| \leq |h|$ and the definition of U. For $|x + h| + |y + k| \geq 1$, (2.5) can be rewritten as
\[
(1 - |x + h|)^2 \leq |y + k|^2 + h^2 - |k|^2.
\]
If $|x + h| \leq 1$, this inequality follows from $|k| \leq |h|$ and $|x + h| + |y + k| \geq 1$. If $|x + h| > 1$, then $(1 - |x + h|)^2 \leq (1 - |x| - |h|)^2$ and it suffices to show
\[
(1 - |x|)^2 - 2|h| (1 - |x|) \leq |y|^2 - 2|y| |k|.
\]
Since $|h| \geq |k|$, it then suffices to show $(1 - |x|)^2 \leq |y|^2 + 2|h| (1 - |x| - |y|)$, an inequality which follows from $|x + |h| \geq 1$ and $0 \leq |y|^2 - 2|y| (1 - |x|) + (1 - |x|)^2$, so that
\[
(1 - |x|)^2 \leq |y|^2 + 2(1 - |x|)(1 - |x| - |y|) \leq |y|^2 + 2|h| (1 - |x| - |y|).
\]
To prove (2.3), since $|e_j| \leq |d_j|$, by (2.4) we have
\[
(2.6) \quad U(f_j, g_j) \leq U(f_{j-1}, g_{j-1}) + \phi(f_{j-1}, g_{j-1}) d_j + \psi(f_{j-1}, g_{j-1}) \cdot e_j.
\]
Since f is a submartingale, $E(d_j | \mathcal{F}_{j-1}) \geq 0$. It then follows from $|\psi| \leq -\phi$ and g being strongly subordinate to f that
\[
\phi(f_{j-1}, g_{j-1}) E(d_j | \mathcal{F}_{j-1}) + \psi(f_{j-1}, g_{j-1}) \cdot E(e_j | \mathcal{F}_{j-1}) \leq 0.
\]
Using this after taking the conditional expectations relative to \mathcal{F}_{j-1} in (2.6) gives
\[
E(U(f_j, g_j) | \mathcal{F}_{j-1}) \leq U(f_{j-1}, g_{j-1}).
\]
Taking expectations of both sides gives (2.3) and completes the proof.

3. Discrete-time sharp maximal inequalities

Theorem 3.1. If f is a submartingale relative to a filtration $(\mathcal{F}_n)_{n \geq 0}$ and g is strongly subordinate to f, then for all $\lambda > 0$
\[
(3.1) \quad \lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 4 \|f\|_1 - 2E f_0.
\]
Thus if $f_0 \equiv 0$, then
\[
(3.2) \quad \lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 4 \|f\|_1,
\]
while in general
\[
(3.3) \quad \lambda P(g^* \geq \lambda) \leq \lambda P(\sup_{n \geq 0} (|f_n| + |g_n|) \geq \lambda) \leq 6 \|f\|_1.
\]
The constants 4 and 6 are the best possible in (3.2) and (3.3) respectively, even in the case $\nu = 1$ and g is a ± 1-transform of f.

Proof. The inequalities follow immediately from Theorem 2.1. For the sharpness, first consider the following example:
Example 3.1. Fix $3 < \beta < 4$ and let $\alpha = (4 - \beta)/4$, so that $\beta < 4 - 2\alpha$. On the Lebesgue interval $[0,1]$, let $f_0 = g_0 \equiv 0$,

$$f_1 = 1_{[0, \alpha)} - \frac{\alpha}{1 - \alpha} 1_{[\alpha,1]}, \quad g_1 = f_1,$$

$$f_2 = f_1 - 1_{[\alpha,2\alpha-\alpha^2]} + \frac{\alpha}{1 - \alpha} 1_{[2\alpha-\alpha^2,1]}, \quad g_2 = g_1 + 1_{[\alpha,2\alpha-\alpha^2]} - \frac{\alpha}{1 - \alpha} 1_{[2\alpha-\alpha^2,1]},$$

$$f_3 = f_2 + \frac{1}{1 - \alpha} 1_{[\alpha,2\alpha-\alpha^2]}, \quad g_3 = g_2 + \frac{1}{1 - \alpha} 1_{[\alpha,2\alpha-\alpha^2]}.$$

Then $f = (f_0,f_1,f_2,f_3)$ is a submartingale and $g = (g_0,g_1,g_2,g_3)$ is a ± 1-transform of f. Note that $g_3 = 1_{[0,\alpha]} + 2 1_{[\alpha,2\alpha-\alpha^2]} - (2\alpha/(1 - \alpha)) 1_{[2\alpha-\alpha^2,1]}$ and $f_3 = 1_{[0,\alpha]}$. Thus

$$2P(f_3 + g_3 \geq 2) = (4 - 2\alpha)\alpha > \beta \sup_{0 \leq j \leq 3} E f_j^+.$$

Now let $\tilde{f}_0 = \tilde{g}_0 \equiv 0$ and for $j \geq 0$, $1 \leq k \leq 3$, and $s \in [0,1]$, let

$$\tilde{f}_{3j+k}(s) = \tilde{f}_{3j}(s) + 1_{[1-2^{-j}1-2^{-j-1}]}(s) f_{3k}(2^{j+1}(s - 1 + 2^{-j})), \quad \tilde{g}_{3j+k}(s) = \tilde{g}_{3j}(s) + 1_{[1-2^{-j}1-2^{-j-1}]}(s) g_{3k}(2^{j+1}(s - 1 + 2^{-j})).$$

By induction on $j \geq 0$, we have

$$P(\tilde{f}_{3j} = 1, \tilde{g}_{3j} = 1) = (1 - 2^{-j})\alpha, \quad P(\tilde{f}_{3j} = 0, \tilde{g}_{3j} = 2) = (1 - 2^{-j})(\alpha - \alpha^2),$$

$$P(\tilde{f}_{3j} = 0, \tilde{g}_{3j} = -2\alpha/(1 - \alpha)) = (1 - 2^{-j})(1 - \alpha)^2,$$

and, for $k \leq 3j$, $\sup_{s \in [0,1]} \tilde{f}_k \subseteq [0, 1 - 2^{-j}]$.

It follows that \tilde{f} is a submartingale, \tilde{g} is a ± 1-transform of f, and, for $j \geq 0$, $1 \leq k \leq 3$, $\|\tilde{f}_{3j+k}\|_1 = \|\tilde{f}_{3j}\|_1 + 2^{-j-1} \|f_{3k}\|_1$. Since $\|\tilde{f}_{3j}\|_1 = (1 - 2^{-j})\alpha$ and $\|f_{3j}\|_1 = \|f_3\|_1 = 2\alpha$, we have that $\|\tilde{f}_{3j+k}\|_1 \leq \alpha = E f_3$. Thus, with $\lambda = 2$,

$$\lim_{j \to \infty} \lambda P(\tilde{f}_{3j} + \tilde{g}_{3j} \geq \lambda) = \lambda P(f_3 + g_3 \geq \lambda) > \beta E f_3 \geq \beta \sup_{k \geq 0} \|f_k\|_1.$$

Since we are assuming a strict inequality, there exists an n such that

$$\lambda P(\tilde{f}_n + \tilde{g}_n \geq \lambda > \beta \sup_{j \geq 0} \|\tilde{f}_j\|_1 \geq \beta \sup_{0 \leq j \leq n} \|\tilde{f}_j\|_1).$$

Now let $(r_j)_{j \geq 1}$ be a sequence of independent identically distributed random variables such that $P(r_1 = 1) = P(r_1 = -1) = \frac{1}{2}$ and the (r_j) are independent from both the (f_j) and the (\tilde{g}_j).

For $j \geq 0$, let $\tilde{f}_{n+j+1} = \tilde{f}_{n+j} + \tilde{f}_{n+1} r_{j+1}$ and $\tilde{g}_{n+j+1} = \tilde{g}_{n+j} - \tilde{f}_{n+1} r_{j+1}$. By this sequence of double or nothings, we have that for $j \geq n$, $\|\tilde{f}_j\|_1 = \|\tilde{f}_n\|_1$, and

$$\lim_{j \to \infty} \lambda P(\tilde{g}_n \geq \lambda) = \lambda P(\tilde{f}_n + \tilde{g}_n \geq \lambda) > \beta \|\tilde{f}\|_1.$$
and since we are assuming a strict inequality, we can choose an \(m > n \) that satisfies

\[
\lambda P(\tilde{g}_m \geq \lambda) > \beta \|\tilde{f}\|_1.
\]

This immediately implies the sharpness in (3.2). To show the sharpness in (3.3), it suffices to use \(\tilde{f} \) and \(\tilde{g} \) to construct a submartingale \(F \) with a \(\pm 1 \)-transform \(G \) such that

\[
(3.6) \quad \lambda P(\sup_{j \geq 0} G_j \geq \lambda) > \frac{3}{2} \beta \|F\|_1.
\]

Let \(\alpha = P(\sup_{0 \leq j \leq m} \tilde{g}_j \geq \lambda) \) so that \(\alpha > 0 \) and let \(\delta = (4\|\tilde{f}\|_1 - \lambda \alpha)/(6 - 6\alpha) \) (in the case \(\alpha = 1 \), let \(\delta = 0 \)). By (3.2), \(\lambda \alpha \leq 4\|\tilde{f}\|_1 \), hence \(\delta \geq 0 \).

Let \(s \) and \(t \) be independent random variables, independent from the \((\tilde{f}_j) \) such that \(P(s = \lambda/6) = \alpha \) and \(P(s = \delta) = 1 - \alpha \), while \(P(t = -1) = 2/3 \) and \(P(t = 2) = 1/3 \). Note that \(\mathbb{E}s \leq 2\|\tilde{f}\|_1/3 \).

Let \(F_0 = -s, \ G_0 = s, \ F_1 = F_0 + tF_0, \) and \(G_1 = G_0 - tF_0 \). We then have that \(\|F_1\|_1 = \|F_0\|_1 = \mathbb{E}s \).

Let \(F_2 = F_1 - F_0 \) and \(G_2 = G_1 - F_1 \). Thus \(F_2 = 0 \) a.s. while \(G_2 = 6s \) on the set \(\{t = 2\} \) and \(G_2 = 0 \) on the set \(\{t = -1\} \). We then have that

\[
P(F_2 = 0, G_2 = \lambda) = \alpha/3, \quad P(F_2 = 0, G_2 = 6\delta) = (1 - \alpha)/3,
\]

\[
P(F_2 = 0, G_2 = 0) = 2/3.
\]

Let \(A = \{G_2 = 0\} \) and, for \(j \geq 1 \), let \(F_{2+j} = 1_A \tilde{f}_j \) and \(G_{2+j} = G_2 + 1_A \tilde{g}_j \). Then by the independence of \(t \) and the \((\tilde{f}_j) \), \(F \) is a submartingale, \(G \) is a \(\pm 1 \)-transform of \(F \), and for \(j \geq 1 \) we have that \(\|F_{2+j}\|_1 = \|\tilde{f}_j\|_1/3 \), while

\[
P(\sup_{0 \leq j \leq m+2} G_j \geq \lambda) = \left(1 + \frac{2}{3}\right)P(\sup_{0 \leq j \leq 2} \tilde{g}_j \geq \lambda)
\]

\[
\geq \frac{1}{3} \alpha + \frac{2}{3}P(\sup_{0 \leq j \leq m} \tilde{g}_j \geq \lambda) = P(\sup_{0 \leq j \leq m} \tilde{g}_j \geq \lambda),
\]

so that

\[
\lambda P(\sup_{0 \leq j \leq m+2} G_j \geq \lambda) \geq \lambda P(\sup_{0 \leq j \leq m} \tilde{g}_j \geq \lambda) \geq \beta \|\tilde{f}\|_1 \geq \frac{3}{2} \beta \|F\|_1.
\]

4. Applications to stochastic integrals

Theorem 4.1. With \((\Omega, \mathcal{F}, P) \) and \((\mathcal{F}_t)_{t \geq 0} \) as in Section 1, suppose \(X \) is an adapted right-continuous submartingale with left limits such that \(\mathbb{E}X_0 \) is finite and \(H \) is a predictable process with values in the closed unit ball of \(\mathbb{R}^p \). Then with \(Y \) defined by \(Y_t = H_0X_0 + \int_{(0,t]} H_s dX_s \), we have that, for \(\lambda > 0 \),

\[
(4.1) \quad \lambda P(Y^* \geq \lambda) \leq 4 \sup_{t \geq 0} \mathbb{E}X_t^+ - 2 \mathbb{E}X_0.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
so that

\[\lambda P(Y^* \geq \lambda) \leq 6 \|X\|_1 \]

and if \(X_0 \equiv 0 \), then

\[\lambda P(Y^* \geq \lambda) \leq 4 \|X\|_1. \]

The constants 6 and 4 in (4.2) and (4.3) respectively are the best possible.

Proof. As in Theorem 2.1 we have

\[E(X + t) \leq \|Xt\|_1 \leq 2E(X^+ - EX), \]

hence we can assume the finiteness of \(\|X\|_1 \). The proof follows in the same way as the proof of Theorem 5.1 of [5], except that we use Theorem 2.1 above to show that \(X \) is an \(L^{1,\infty} \)-integrator in the sense of [1].

The sharpness in (4.2) and (4.3) follow from the sharpness in (3.8) and (3.7) holding even for \(\pm 1 \)-transforms.

5. Lack of \(L^p \) inequalities

Fix \(p \in [1, \infty) \) and \(\beta > 1 \). We shall construct a discrete time submartingale \(F = (F_0, F_1, \ldots) \) with \(F_0 = 0 \) and a \(\pm 1 \)-transform of \(F \), \(G = (G_0, G_1, \ldots) \) such that

\[\|G\|_1 > \beta \|F\|_p. \]

To do this, we will first construct a finite length submartingale \(f = (f_0, f_1, \ldots, f_N) \) with \(f_0 = 0 \), \(f_N \geq 0 \) together with a \(\pm 1 \)-transform of \(f \), \(g = (g_0, \ldots, g_N) \) such that

\[\|g\|_1 > \beta \|f^+\|_p, \]

where \(\|f^+\|_p = \sup_{0 \leq N} \mathbb{E}(f^+_N)^p \). Let \(M > 4 \beta \) and let \((r_1, \ldots, r_{2M}) \) be a sequence of independent random variables such that for \(j = 1, 2 \), \(P(r_j = 1) = P(r_j = -1) = 1/2 \) and for \(2 \leq j \leq M \),

\[P(r_{2j-1} = 1) = P(r_{2j-1} = -1) = \frac{1}{2}; \]

\[P(r_{2j} = -1) = \frac{1}{3}, \quad P(r_{2j} = \frac{1}{2}) = \frac{2}{3}. \]

Let \(f_j = \sum_{k=0}^j d_k \) where \(d_0 = 0 \), \(d_1 = r_1/2 \), \(d_2 = r_2/2 \), and \(d_j = 1_{\{f_j-1 \leq 0\}} r_j f_{j-1} \) for \(j > 2 \). By the independence of the \(r_j \), \((f_j)_{1 \leq j \leq 2M} \) forms a martingale. Note that for \(j \geq 1 \),

\[P(f_{2j} = 1) = \frac{1}{3}, \quad P(f_{2j} = -3^{j-1}) = \frac{1}{4} \left(\frac{1}{3} \right)^{j-1}, \]

\[P(f_{2j} = 0) = \frac{3}{4} - \frac{1}{4} \left(\frac{1}{3} \right)^{j-1}. \]
For $0 \leq j \leq 2M$, let $g_j = \sum_{k=0}^{j} (-1)^k d_k$. Then for $2 \leq j \leq 2M$, $\| f_j^+ \|_p = f_j^+ \|_1 = 1/4$, while for $j \geq 1$,

$$\| g_{2j+2} \|_1 = \| g_{2j+1} \|_1 = \| g_{2j} \|_1 + 1/4.$$

Since $\| g_2 \|_1 = 1/2$, it follows that $\| g_{2M} \|_1 = (M + 1)/4$. Now let $N = 2M + 1$, $f_N = f_{2M}$, and $g_N = g_{2M} + 1_{\{ f_{2M} < 0 \}} |f_{2M}|$. Then $f = (f_0, \ldots, f_N)$ forms a submartingale, $\| f^+ \|_p = 1/4$, and, since $f_{2M} < 0$ implies $g_{2M} = 0$, $\| g_N \|_1 \geq \| g_{2M} \|_1 - \| f_{2M} \|_1 = M/4 > \beta f^+ \|_p$ by our choice of M.

To construct F and G, we will work with only a small portion of the probability space at a time in order to keep $\| F \|_p$ close to that of $\| f^+ \|_p$. More explicitly, by enriching the probability space if necessary, let A_1, \ldots, A_K be a partition of the space such that $\sigma(A_1, \ldots, A_K)$ is independent of $\sigma(f_0, \ldots, f_N)$ and, for $1 \leq j \leq K$, $P(A_j) \leq \epsilon/3^{p\theta}$, where ϵ satisfies $\beta_p(\| f^+ \|_p + \epsilon) < \| g_N \|_1$.

Let $F_0 = G_0 = 0$ and for $1 \leq k \leq K$ and $1 \leq n \leq N$, let

$$F_{(k-1)N+n} = F_{(k-1)N} + A_k f_n, \quad G_{(k-1)N+n} = G_{(k-1)N} + 1_{A_k} g_n.$$

Then F is a submartingale and G is a ± 1-transform of F. Since A_1, \ldots, A_N partition the space, $G_{KN} = g_N$ and for $1 \leq k \leq K$ and $1 \leq n \leq N$, the disjointness of the A_j gives us

$$\| F_{(k-1)N+n} \|_p = f_n 1_{\bigcup_{j=1}^{k-1} A_j} \|_p + \| f_n 1_{A_k} \|_p.$$

Since $f_N \geq 0$ a.s. and the f_j are bounded in absolute value by 3^M, we have that

$$\| F_{(k-1)N+n} \|_p \leq \| f_N \|_p + 3^{p\theta} P(A_k) \leq \| f^+ \|_p + \epsilon$$

which gives us (5.1) by our choice of ϵ.

ACKNOWLEDGMENT

The author is grateful to Donald Burkholder for his advice and criticisms.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA V6T 1Z2

E-mail address: hammack@math.ubc.ca