Non-normal, standard subgroups of the Bianchi groups
HTML articles powered by AMS MathViewer
- by A. W. Mason and R. W. K. Odoni
- Proc. Amer. Math. Soc. 124 (1996), 721-726
- DOI: https://doi.org/10.1090/S0002-9939-96-03310-2
- PDF | Request permission
Abstract:
Let $S$ be a subgroup of $SL_n(K)$, where $K$ is a Dedekind ring, and let $\mathbf {q}$ be the $K$-ideal generated by $x_{ij},x_{ii}-x_{jj}$ $(i\ne j)$, where $(x_{ij})\in S$. The subgroup $S$ is called standard iff $S$ contains the normal subgroup of $SL_n(K)$ generated by the $\mathbf {q}$-elementary matrices. It is known that, when $n\ge 3$, $S$ is standard iff $S$ is normal in $SL_n(K)$. It is also known that every standard subgroup of $SL_2(K)$ is normal in $SL_2(K)$ when $K$ is an arithmetic Dedekind domain with infinitely many units. The ring of integers of an imaginary quadratic number field, $\mathcal {O}$, is one example (of three) of such an arithmetic domain with finitely many units. In this paper it is proved that every Bianchi group $SL_2(\mathcal {O})$ has uncountably many non-normal, standard subgroups. This result is already known for related groups like $SL_2(\mathbb {Z})$.References
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- A. O. Gelfond and Yu. V. Linnik, Elementary methods in analytic number theory, George Allen and Unwin, London, 1966.
- Fritz J. Grunewald and Joachim Schwermer, Free nonabelian quotients of $\textrm {SL}_{2}$ over orders of imaginary quadratic numberfields, J. Algebra 69 (1981), no. 2, 298–304. MR 617080, DOI 10.1016/0021-8693(81)90206-4
- Bernhard Liehl, On the group $\textrm {SL}_{2}$ over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153–171. MR 611449, DOI 10.1515/crll.1981.323.153
- A. W. Mason, On subgroups of $\textrm {GL}(n,\,A)$ which are generated by commutators. II, J. Reine Angew. Math. 322 (1981), 118–135. MR 603028, DOI 10.1515/crll.1981.322.118
- A. W. Mason, Standard subgroups of $\textrm {GL}_2(A)$, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 341–349. MR 908441, DOI 10.1017/S0013091500026730
- A. W. Mason, Free quotients of congruence subgroups of $\textrm {SL}_2$ over a Dedekind ring of arithmetic type contained in a function field, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 421–429. MR 878891, DOI 10.1017/S0305004100066809
- A. W. Mason, Nonstandard, normal subgroups and nonnormal, standard subgroups of the modular group, Canad. Math. Bull. 32 (1989), no. 1, 109–113. MR 996131, DOI 10.4153/CMB-1989-016-5
- A. W. Mason, Congruence hulls in $\textrm {SL}_n$, J. Pure Appl. Algebra 89 (1993), no. 3, 255–272. MR 1242721, DOI 10.1016/0022-4049(93)90056-Y
- —, Normal subgroups of level zero of the Bianchi groups, Bull. London Math. Soc. 26 (1994), 263–267.
- —, Free quotients of Bianchi groups and unipotent matrices (submitted).
- A. W. Mason, R. W. K. Odoni, and W. W. Stothers, Almost all Bianchi groups have free, noncyclic quotients, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 1–6. MR 1131473, DOI 10.1017/S0305004100075101
- A. W. Mason and R. W. K. Odoni, Free quotients of subgroups of the Bianchi groups whose kernels contain many elementary matrices, Math. Proc. Cambridge Philos. Soc. 116 (1994), 253–273.
- Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 272790, DOI 10.2307/1970630
- L. N. Vaseršteĭn, The group $SL_{2}$ over Dedekind rings of arithmetic type, Mat. Sb. (N.S.) 89(131) (1972), 313–322, 351 (Russian). MR 0435293
- R. Zimmert, Zur $\textrm {SL}_{2}$ der ganzen Zahlen eines imaginär-quadratischen Zahlkörpers, Invent. Math. 19 (1973), 73–81 (German). MR 318336, DOI 10.1007/BF01418852
Bibliographic Information
- A. W. Mason
- Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
- R. W. K. Odoni
- Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
- Email: awm@maths.gla.ac.uk
- Received by editor(s): September 25, 1994
- Communicated by: Ronald M. Solomon
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 721-726
- MSC (1991): Primary 20H10, 11F06; Secondary 11A25, 20E05
- DOI: https://doi.org/10.1090/S0002-9939-96-03310-2
- MathSciNet review: 1322935