Right adjoint for the smash product functor
HTML articles powered by AMS MathViewer
- by Francesca Cagliari
- Proc. Amer. Math. Soc. 124 (1996), 1265-1269
- DOI: https://doi.org/10.1090/S0002-9939-96-03065-1
- PDF | Request permission
Abstract:
The smash-product functor $(\text {–})\wedge x_0$ in the category $\underline {\mathbf {Top}}_*$ of pointed topological spaces has a right adjoint for any choice of the base point $x_0$, if and only if the topological space $X$ is quasi-locally compact, that is, if and only if the product functor $(\text {–})\times X$ has a right adjoint in the category $\underline {\mathbf {Top}}$ of topological spaces.References
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- C. H. Cook and H. R. Fisher, On equicontinuity and continuous convergenge, Math. Ann. 159 (1965), 94–104.
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- B. J. Day and G. M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558. MR 254817, DOI 10.1017/s0305004100045850
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- Dale Husemoller, Fibre bundles, McGraw-Hill Book Co., New York-London-Sydney, 1966. MR 0229247
- Karl H. Hofmann and Jimmie D. Lawson, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310. MR 515540, DOI 10.1090/S0002-9947-1978-0515540-7
- I. M. James, General topology and homotopy theory, Springer-Verlag, New York, 1984. MR 762634, DOI 10.1007/978-1-4613-8283-6
- John R. Isbell, Function spaces and adjoints, Math. Scand. 36 (1975), no. 2, 317–339. MR 405340, DOI 10.7146/math.scand.a-11581
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- Charles Richard Francis Maunder, Algebraic topology, Cambridge University Press, Cambridge-New York, 1980. MR 694843
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- Francesca Cagliari
- Affiliation: Dipartimento di Matematica, Piazza di Porta San Donato, 5, 40127 Bologna, Italy
- Email: cagliari@dm.unibo.it
- Received by editor(s): November 3, 1993
- Received by editor(s) in revised form: August 19, 1994
- Communicated by: Andreas R. Blass
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1265-1269
- MSC (1991): Primary 54B30; Secondary 18A40
- DOI: https://doi.org/10.1090/S0002-9939-96-03065-1
- MathSciNet review: 1301490