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Abstract. We study the behaviour of the notion of “sub-adjoint ideal to a
projective variety” with respect to general hyperplane sections. As an appli-
cation we show that the two classical definitions of sub-adjoint hypersurface
given respectively by Enriques and Zariski are equivalent.

1. Introduction and results

Let X ⊂ P := Pr be a closed integral sub-variety of the r-dimensional projective
space over an algebraically closed field k of characteristic zero. Let J be a coherent
sheaf of ideals ofOX and let Z := V (J) be the closed subscheme of X corresponding
to J . Denote by V (resp. D) the pull-back of Z (resp. of a general hyperplane
section of X) via the normalization morphism ν : X → X .

(Here by “general element of a linear system” we mean “all divisors correspond-
ing to the closed points of a suitable non-empty open set of the projective space
parametrizing it”.)

We recall the following (see [C2], Definition and Theorem, also for a more general
setting):

Definition 1. Let J ⊂ OP be a coherent sheaf of ideals such that JOX = J .
We say that J (or J) is sub-adjoint to X if the following equivalent conditions are
satisfied:

(i) The map
ρs : H0(P,J (s))→ H0(X,JOX(sD)

is surjective for s� 0.
(ii) The map

σs : H0(X, J(s))→ H0(X, JOX(sD)

is surjective for s� 0.
(iii) J is extended (i.e., by definition, J = ν∗JOX)

A remarkable example of sub-adjoint ideal is the conductor, i.e. the largest
extended ideal sheaf of OX (see Condition (iii)).
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In fact there are the following classical definitions (Gorenstein [G] for curves,
and Zariski [Z1] for hypersurfaces):

Definition 2 (Zariski, Gorenstein). Let X be a hypersurface and F the conductor
of OX . Let F be the largest ideal sheaf of OP such that F = FOX . A hypersurface
F of degree n is said to be (GZ)-sub-adjoint to X if it corresponds to a non-zero
element of H0(P,F(n)). (If r = 2 Gorenstein [G] uses the term adjoint in place of
sub-adjoint.)

We remark that in this case condition (i) holds for every s > 0 (loc. cit.; see also
[C2] for a quick cohomological proof). Thus condition (i) (considered for the first
time by Arbarello and Ciliberto [AC] in view of non-trivial examples) is a natural
generalization of the notion of “sub-adjointness” considered in Definition 2.

In view of Definition 2 the following definition will be useful:

Definition 3. The non-normal subscheme of X is the closed subscheme corre-
sponding to the conductor of OX and will be denoted by W .

Note that the support of W is exactly the set of non-normal points of X. Note
also that F is (GZ)-sub-adjoint to X, according to Definition 2, if and only if F
contains W as a subscheme.

Another classical definition of sub-adjoint is due to Enriques [E] in the case of
surfaces in P3. We rewrite it from [Z2], p. 53:

Definition 4 (Enriques). Let F be a surface in projective 3-space, with arbitrary
singularities. The surfaces φ which cut out on a general plane adjoint curves of the
corresponding plane section C of F , are called sub-adjoint surfaces of F .

(In modern terms: φ is sub-adjoint ((E)-sub-adjoint in the following) if for any
general planeH the curve φ∩H contains the non-normal subscheme of C := X∩H.)

Remarks. 1. The notion of “adjoint curve to a plane curve” used in Definition 4
is not defined in Enriques’ paper (nor in Zariski’s book). Definition 4 is clear and
meaningful if one uses Gorenstein’s definition, which can be shown to be equivalent
to all classical definitions, except the one due to Nöther, which is stronger, and
does not seem to be the right one to make things work. (We remark however that
for general curves of sufficiently high degree all known definitions of adjoint curve
to a given plane curve are equivalent.) For details and bibliography on this matter
we refer to [GV1] and [GV2].

2. In the classical literature the notion of sub-adjoint hypersurface to a given
hypersurface exists only for surfaces in P3, although it can obviously be given by
induction starting from Definition 4. Also the notion of adjoint hypersurface to a
given hypersurface exists only for surfaces in P3 (see [E] or [Z2], p. 64). There is
instead the notion of “adjoint hypersurface to a given space curve” (see [C]), which
is a particular case of the situation considered in Definition 1.

The starting point of the present paper is based on the idea of Definition 4, to
check sub-adjointness by looking at a general hyperplane section. Indeed one of our
motivations is to compare Definitions 2 and 4, as a starting point toward a modern
revisitation of the classical theory of adjoint surfaces of Enriques [E], which is far
from being completely understood (the only recent papers on the subject are, to
the best of our knowledge, [BL] and [S]).

Our main result, to be proved in the next section, is the following “going up”
and “going down” theorem for sub-adjointness, with respect to hyperplane sections:
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Theorem. Let the notation and the assumptions be as before, with dim(X) ≥ 2.
Let X ′ := H ∩X be a general hyperplane section of X. Then we have:

(i) X ′ is integral and ν−1(X ′)
ν→ X ′ is the normalization of X ′;

(ii) If J is sub-adjoint to X, then J ′ := J|X′ is sub-adjoint to X ′;
(iii) If X is S2 and J ′ is sub-adjoint to X ′ (for almost all H’s), then J is sub-

adjoint to X;
(iv) If F is the conductor of OX , then F′ := FOX′ is the conductor of OX′ ;
(v) If X is S2, Z := V (J) has no zero-dimensional components and J ′ = F′ is

the conductor of OX′ (for almost all H’s), then J = F (the conductor of OX);
(vi) If a hypersurface F is (GZ)-sub-adjoint to X, then F ′ := F ∩ H is (GZ)-

sub-adjoint to X ′;
(vii) If X is S2 and F is a hypersurface such that F ′ is (GZ)-sub-adjoint to X ′

(for almost all H ′s), then F is (GZ)-sub-adjoint to X.

Corollary. If X is a surface in P3, then a surface F is (GZ)-sub-adjoint to X if
and only if it is (E)-sub-adjoint to X, i.e. the definitions of sub-adjoint given by
Zariski-Gorenstein and Enriques are equivalent.

2. Proofs

Notation and general assumptions are as in section 1. We begin with the proof
of part (i) of the Theorem, which we restate as follows:

Lemma 1. (i) X ′ is an integral scheme;
(ii) ν−1(X ′) is normal;

(iii) ν−1(X ′)
ν→ X ′ is the normalization of X ′.

Proof. (i) follows from Bertini’s Theorem (see e.g. [J], 6.11, 2) and 3), with d = 1).
(ii) follows from [CGM] (see Theorem 1 and the following Corollary 1, with P

= Normal).
(iii) A general hyperplane H does not contain any irreducible component of the

non-normal subscheme of X . Hence ν induces a finite birational map ν1(X ′)→ X ′:
the conclusion follows from (ii). �

In order to prove the rest of the Theorem we need several Lemmas. As usual we
denote by an upper bar the integral closure of a domain. If A is a domain, an ideal
I of A is said to be extended iff IA = I (see Definition 1, (iii)).

Lemma 2. Let (A,m) be a local noetherian integral domain, with finite integral
closure A and let I ⊂ m be an ideal of A. Let t ∈ m and put A′ := A/tA and
I ′ := IA′. Assume:

a) A′ is a domain and A
/
tA = A′;

b) t is a non zero-divisor mod I and mod IA;
Then we have:
(i) I ′A′ = IA

/
t(IA);

(ii) I = IA⇐⇒ I ′ = I ′A′ (i.e. I is extended iff I ′ is extended).

Proof. By a) we have

I ′A′ = IA

(
A

tA

)
=

IA

IA ∩ tA
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and by b)

IA

IA ∩ tA
=

IA

t(IA)

This proves (i).
Now, if I = IA we have by (i) and b):

I ′A′ = IA
/
t(IA) = I/tI = I/tA ∩ I = I ′.

Conversely if I ′ = I ′A′, then:

IA
/
t(IA) = I ′A′ = I ′ = I/tI

whence I + t(IA) = IA, and I = IA by Nakayama’s Lemma. �

Lemma 3. Let the assumptions be as in Lemma 2 and assume further that A is
S2. If I ′ is the conductor of A′, then I is the conductor of A.

Proof. Let b be the conductor of A. By Lemma 2 I is extended and hence I ⊂ b,
whence I ′ ⊂ bA′. Since A is S2, all the prime ideals associated to b have height 1,
and hence they are associated to I. Then by assumption b) t is a non-zero-divisor
modulo the conductor (see e.g. [M], Th. 6.5). Then by Lemma 2 applied to b we
have that bA′ is extended, and hence bA′ ⊂ I ′, so bA′ = I ′ by the previous remark.
Then the inclusion I ↪→ b induces an isomorphism I/tI → b/tb, whence b = I+ tb,
and I = b by Nakayama’s Lemma. �

Lemma 4. Let R be a noetherian domain, and let a, b be two ideals of R. Assume
that there are maximal ideals m1, ...,mn such that:

a) aRmi = bRmi for i = 1,...,n;
b) every prime ideal associated to either a or b is contained in some mi.
Then a = b.

Proof. Let S = R \
⋃

mi , and let B := S−1R. Then from a) it follows that
aBmiB = bBmiB for i = 1, . . . , n. Then if M := (aB+bB)/bB we have Mm = 0 for
every maximal ideal m of B, whence M = 0 (e.g. [AM], Prop. 3.8) and aB ⊆ bB.
By a similar argument we get the opposite inclusion, whence aB = bB. Moreover
by b) no prime ideal associated to either a or b intersects S, and hence (e.g. [AM],
Prop. 4.9) a = R ∩ aB = R ∩ bB = b. �

Lemma 5. Assume X is S2 and dim X ≥ 2; let Y ⊂ X be a closed subscheme of
codimension at least 2. Then there is a hypersurface F containing Y such that:

a) F ∩X is an integral scheme;
b) F does not contain any irreducible component of the non-normal subscheme

W of X (see Def. 2).

Proof. Let Σn be the linear system cut out on X by the hypersurfaces of degree
n containing Y . If n is sufficiently large, Σn has no base points outside of Y and
this easily implies that Σn+1 separates points outside of Y . Thus Σn+1 induces
an injective morphism φ : X \ Y → Pq (for suitable q), whence dim(φ(X \ Y )) =
dim(X) ≥ 2. Hence Bertini’s Theorem (e.g. [J], 6.11, 2) and 3), with d = 1) implies
that if E is a general element of Σn+1, then E ∩ (X \ Y ) is integral. By property
S2 E is of pure codimension 1, and since Y has codimension ≥ 2, it follows that E
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is irreducible. Moreover by Lemma 4 (applied, locally, to the ideals of E and Ered)
we get E = Ered, and then E is an integral subscheme of X . Hence for any general
hypersurface F of degree n + 1 containing Y , F ∩ X is an integral scheme. Now
since all irreducible components of W are 1-codimensional, while codim(Y ) ≥ 2,
it is always possible to choose the hypersurface F so that it does not contain any
component of W . �
Lemma 6. Let F be a hypersurface such that:

a) F does not contain any irreducible component of Z = V (J);
b) F ∩X is integral;
c) Jx is extended for all x ∈ X \ F ∩X.
Then J is extended.

Proof. The property of being extended is local (e.g. [C2], Theorem), and hence we
have to prove the following:
(*) Let U := spec(R) be a standard open affine subscheme of X , and a = H0(U, J).

Then a = aR.
We prove first that, if f ∈ R is an equation of F ∩ U , then

(**) Rf ∩R = R.

Indeed let x ∈ Rf ∩ R, and put x = a
fn , with a ∈ R and n minimum. Since x is

integral over R, we have an equality of the form

a0f
np + a1f

n(p−1) + ...+ ap−1f
p + ap = 0

with p > 0 and a0, ..., ap−1 ∈ R.
If n > 0 we have ap ∈ (f), and since (f) is prime by b), it follows that a ∈ (f),

which contradicts the minimality of n. Thus n = 0, and x ∈ R. Then (**) follows.
Now from a) and c) we get aRf ∩R = a and aRf = aRf . Then, using also (**),

it follows that

aR ⊂ (aRf ) ∩R = (aRf ) ∩R = (aRf ) ∩Rf ∩R = (aRf ) ∩R = a,

whence (*), and the conclusion follows. �
Now we can proceed in the proof of our Theorem.

Proof of part (ii) of the Theorem. If H is a general hyperplane, then (i) holds,
and moreover H does not contain any irreducible component of Z = V (J), and
ν−1(X ′) does not contain any irreducible component of ν−1(Z). Let now x ∈ X ′,
A := OX,x, I := Jx and let t ∈ A be an equation of H near x. Then, by Lemma
2, J ′x is an extended ideal of A′ = OX′,x, whence J ′ is extended and the conclusion
follows (see Definition 1, (iii)). �
Proof of part (iii) of the Theorem. Observe that Jx is trivially extended for all
x ∈ Norm(X). Let now W1, ...,Wn be the irreducible components of W (the non-
normal subscheme of X , see Def. 3). Since X is S2, each Wi has codimension 1, and
hence dimension ≥ 1. Then, if H is a general hyperplane, we have Wi∩H 6= ∅ for all
i’s, and hence by Lemma 2 there is xi ∈Wi such that Jxi is extended (i = 1, ..., n).
Then

Y := SuppX(ν∗(JOX)
/
J) = {x ∈ X |Jx is non-extended}

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1040 NADIA CHIARLI AND SILVIO GRECO

is a closed subset of X of codimension at least 2. The conclusion is then a straight-
forward consequence of Lemmas 5 and 6 (a posteriori Y is empty). �
Proof of part (iv) of the Theorem. Since the problem is local, it is sufficient to prove
the following:

(*) let U = spec(R) be an affine standard open subscheme of X , and b

the conductor of R; let H be a general hyperplane, t ∈ R the equation of H ∩U ,
R′ = R/tR, and b′ the conductor of R′. Then b′ = bR′.
By Lemma 1 R′ is a domain and R′ = R

/
tR. Moreover b = HomR(R,R) and

b′ = HomR′(R′, R
′), whence by standard facts (e.g. [M], p. 140, Lemma 2(ii)) we

get b′ = HomR(R,R′). Now from the exact sequence

0 −→ R
t−→ R −→ R′ −→ 0

we get the exact sequence:

0 −→ HomR(R,R)
t−→ HomR(R,R) −→ HomR(R,R′)

−→ Ext1R(R,R)
t−→ Ext1R(R,R)

Since R is a finite R-module, it follows that Ext1R(R,R) is such, and hence it has
only finitely many associated prime ideals ([M], p. 39, Th. 6.5) and then, being H
general, t does not belong to any of them. Then t is Ext1R(R,R)-regular ([M], p. 38,
Th. 6.1) and this readily implies that b′ = b/tb. But b/tb = b/tR ∩ b = bR′, since
t is a non-zerodivisor modulo b (being H general), and the conclusion follows. �
Proof of part (v) of the Theorem. Let W1, ...,Wn be the irreducible components
of W (see Definition 3), and let Z1, ..., Zn be the irreducible components of Z. We
have dim(Wi) > 0 for i = 1, ..., n by property S2, and dim(Zj) > 0 for j = 1, ...,m
by assumption. Then any hyperplane intersects all Wi’s and all Zj ’s, and by an
argument as in the proof of part (ii) one can apply Lemma 3 to show that there are
xi ∈Wi and yj ∈ Zj such that Jxi is the conductor ofOX,xi and Jyj is the conductor
of OX,yj (i = 1, ..., n; j = 1, ...,m). Since the problem is local, the conclusion is a
straightforward consequence of Lemma 4. �
Proof of part (vi) of the Theorem. It follows immediately from part (iv). �
Proof of part (vii) of the Theorem. The set of the homogeneous polynomials of
any given degree corresponding to the hypersurfaces F such that F ′ is (GZ)-sub-
adjoint to X ′ for almost all H’s form the homogeneous parts of a homogeneous
ideal A ⊆ S :=

⊕
H0(P,OP(n)). We consider the ideal sheaf I = ÃOX , and we

claim that I = F.
Indeed by (vi) we have F ⊆ I; moreover by the definition of I and of (GZ)-sub-

adjoint (see Definition 2) we get I ′ ⊆ F′ for almost all hyperplanes H’s.
Then I ′ = F′, and in particular I ′ is extended. Then by (iii) I is extended and

this implies I ⊆ F. The conclusion follows. �
Remark. The only place where we need the characteristic zero assumption is in
part (i) of the Theorem (and in particular when we use a result from [CGM], see
proof of Lemma 1). It might be interesting to know whether this assumption can
be dropped.
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