The nilpotence height of $P_t^s$
HTML articles powered by AMS MathViewer
- by Kenneth G. Monks
- Proc. Amer. Math. Soc. 124 (1996), 1297-1303
- DOI: https://doi.org/10.1090/S0002-9939-96-03150-4
- PDF | Request permission
Abstract:
The method of Walker and Wood is used to completely determine the nilpotence height of the elements $P_t^s$ in the Steenrod algebra at the prime 2. In particular, it is shown that $(P_t^s)^{2\lfloor s/t \rfloor +2}=0$ for all $s\ge 0$, $t\ge 1$. In addition, several interesting relations in $A$ are developed in order to carry out the proof.References
- Donald W. Anderson and Donald M. Davis, A vanishing theorem in homological algebra, Comment. Math. Helv. 48 (1973), 318–327. MR 334207, DOI 10.1007/BF02566125
- D. Arnon, Monomial bases in the Steenrod algebra, preprint, MIT, 1993.
- Donald M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236. MR 328934, DOI 10.1090/S0002-9939-1974-0328934-1
- Andrew M. Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), no. 1, 161–166. MR 534410, DOI 10.1090/S0002-9939-1979-0534410-8
- Brayton Gray, Homotopy theory, Pure and Applied Mathematics, Vol. 64, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. An introduction to algebraic topology. MR 0402714
- Leif Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97–115. MR 196740, DOI 10.7146/math.scand.a-10751
- E. Lucas, Théorie des functions numériques simplement periodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- Kenneth G. Monks, Nilpotence in the Steenrod algebra, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 401–416. Papers in honor of José Adem (Spanish). MR 1317590
- Kenneth G. Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), no. 2, 625–634. MR 1207540, DOI 10.1090/S0002-9939-1994-1207540-3
- Judith H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), no. 2, 657–661. MR 1152292, DOI 10.1090/S0002-9939-1993-1152292-8
- Judith H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995), no. 2, 627–637. MR 1254854, DOI 10.1090/S0002-9939-1995-1254854-8
- Philip D. Straffin Jr., Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253–255. MR 380796, DOI 10.1090/S0002-9939-1975-0380796-3
- G. Walker and R. M. W. Wood, The nilpotence height of $Sq^{2^n}$, Proc. Amer. Math. Soc. 124 (1996),1291–1295.
Bibliographic Information
- Kenneth G. Monks
- Affiliation: Department of Mathematics University of Scranton Scranton, Pennsylvania 18510
- Email: monks@uofs.edu
- Received by editor(s): June 28, 1994
- Communicated by: Thomas Goodwillie
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1297-1303
- MSC (1991): Primary 55S10, 55S05; Secondary 57T05
- DOI: https://doi.org/10.1090/S0002-9939-96-03150-4
- MathSciNet review: 1301039