Characterization of the Fourier series of a distribution having a value at a point
HTML articles powered by AMS MathViewer
- by Ricardo Estrada
- Proc. Amer. Math. Soc. 124 (1996), 1205-1212
- DOI: https://doi.org/10.1090/S0002-9939-96-03174-7
- PDF | Request permission
Abstract:
Let $f$ be a periodic distribution of period $2\pi$. Let $\sum ^\infty _{n=-\infty } a_ne^{in\theta }$ be its Fourier series. We show that the distributional point value $f(\theta _0)$ exists and equals $\gamma$ if and only if the partial sums $\sum _{-x\le n\le ax}a_ne^{in\theta _0}$ converge to $\gamma$ in the Cesàro sense as $x\to \infty$ for each $a>0$.References
- Bruce C. Berndt and Ronald J. Evans, Extensions of asymptotic expansions from Chapter 15 of Ramanujan’s second notebook, J. Reine Angew. Math. 361 (1985), 118–134. MR 807255
- Ricardo Estrada, The asymptotic expansion of certain series considered by Ramanujan, Appl. Anal. 43 (1992), no. 3-4, 191–228. MR 1284319, DOI 10.1080/00036819208840061
- —, Valores puntuales distribucionales de series de Fourier, Memorias II Encuentro Centroamericano de Matemáticos, San Ramón, Costa Rica, 1994.
- R. Estrada and R. P. Kanwal, Asymptotic separation of variables, J. Math. Anal. Appl. 178 (1993), no. 1, 130–142. MR 1231732, DOI 10.1006/jmaa.1993.1296
- Ricardo Estrada and Ram P. Kanwal, Asymptotic analysis, Birkhäuser Boston, Inc., Boston, MA, 1994. A distributional approach. MR 1254657, DOI 10.1007/978-1-4684-0029-8
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Ram P. Kanwal, Generalized functions, Mathematics in Science and Engineering, vol. 171, Academic Press, Inc., Orlando, FL, 1983. Theory and technique. MR 732788
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav′yalov, Mnogomernye tauberovy teoremy dlya obobshchennykh funktsiĭ , “Nauka”, Moscow, 1986 (Russian). MR 856918
- G. Walter, Pointwise convergence of distribution expansions, Studia Math. 26 (1966), 143–154. MR 190624, DOI 10.4064/sm-26-2-143-154
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- Ricardo Estrada
- Affiliation: Department of Mathematics, Texas A & M University, College Station, Texas 77843
- Address at time of publication: P. O. Box 276, Tres Ríos, Costa Rica
- MR Author ID: 201509
- Email: restrada@cariari.ucr.ac.cr
- Received by editor(s): May 2, 1994
- Received by editor(s) in revised form: October 18, 1994
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1205-1212
- MSC (1991): Primary 46F10, 42A24
- DOI: https://doi.org/10.1090/S0002-9939-96-03174-7
- MathSciNet review: 1307515