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AN EXAMPLE OF FINITE DIMENSIONAL KAC ALGEBRAS

OF KAC-PALJUTKIN TYPE

YOSHIHIRO SEKINE

(Communicated by Palle E. T. Jorgensen)

Abstract. An example of finite dimensional Kac algebras of Kac-Paljutkin
type is given.

1. Introduction

Motivated by Pontryagin-Tannaka-Krein-Stinespring-Tatsuuma duality for lo-
cally compact groups, M.Enock and J.M.Schwartz introduced the notion of a Kac
algebra and extended the duality to that of the category of Kac algebras. Any lo-
cally compact group is realized as a commutative Kac algebra and a cocommutative
one, and conversely, any commutative (resp. cocommutative) Kac algebra comes
from a locally compact group. However, to the author’s knowledge, except for re-
cent works of Majid [7, 8, 9] based on the matched pair introduced by Takeuchi [16],
a number of examples of non-commutative and non-cocommutative Kac algebras
do not seem to be known.

Before the general theory of Kac algebras, G.I.Kac and V.G.Paljutkin [5] consid-
ered a finite dimensional Kac algebra of a certain type. (They used the terminology
“ring group”.) They showed that the problem of constructing examples of the type
is reduced to that of finding a family of unitary matrices satisfying certain con-
ditions and gave a non-commutative and non-cocommutative 8 dimensional Kac
algebra. (See also Masuoka [10].)

In the theory for subfactors initiated by V.Jones [4], A.Ocneanu [11] introduced
the concept of a paragroup, which can be regarded as a quantization of groups,
to classify subfactors. By using the so-called standard invariant equivalent to the
paragroup, S.Popa classified subfactors under more general conditions. (See [13,
14].) It is known that the finite dimensional Kac algebras are characterized as
special paragroups. (See David [1], Longo [6], Szymanski [15], and also Yamanouchi
[17].)

Motivated by constructing non-commutative and non-cocommutative finite di-
mensional Kac algebras (as examples of paragroups), we shall give an example of
finite dimensional Kac algebras of Kac-Paljutkin type by using the representation
theory of extra-special p-groups and compute the dual structure.
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2. Construction of finite dimensional Kac algebras

In order to fix notation, we first recall the definition of a finite dimensional Kac
algebra. (We consider only the finite dimensional case.) For the general theory of
Kac algebras, we refer to Enock and Schwartz [2, 3].

A finite dimensional Kac algebra K is a quadruple (M,Γ, κ, ϕ) such that

(i) (M,Γ, κ) is an involutive finite dimensional Hopf-von Neumann algebra,
(ii) ϕ is a faithful positive trace on M satisfying

(ιM ⊗ ϕ)((1⊗ y∗)Γ(x)) = κ((ιM ⊗ ϕ)(Γ(y∗)(1⊗ x))), x, y ∈M.

Here ιM is the identity mapping of M . The linear functional ϕ is called a Haar
weight of K. Given a Kac algebra K = (M,Γ, κ, ϕ), the dual Kac algebra K̂ =

(M̂, Γ̂, κ̂, ϕ̂) of K is canonically constructed as follows. M is assumed to be repre-
sented on the standard Hilbert space L2(ϕ). Let λ be the left regular representation
of M on L2(ϕ) with respect to the convolution product in M,W the fundamental

operator of K, and Σ the flip on L2(ϕ) ⊗ L2(ϕ). Then K̂ = (M̂, Γ̂, κ̂, ϕ̂) is defined
by

M̂ = λ(M),

Γ̂(λ(f)) = ΣW ∗ (λ(f)⊗ 1)W Σ, f ∈M ,
κ̂(λ(f)) = λ(κ(f)), f ∈M ,
ϕ̂(λ(f)) = ϕ(ef), f ∈M ,

where e is the unit of M with respect to the convolution product.
In the following, we shall give an example of finite dimensional Kac algebras by

using Kac-Paljutkin’s method. For details, see Kac and Paljutkin [5].
Let k ∈N, k ≥ 3 be fixed and η a primitive k-th root of 1. We set

G = Zk × Zk = {(i, j) | i, j = 0, 1, · · · , k − 1}

and define k × k unitary matrices {p(i,j)}, {u(i,j)} and {v(i,j)} parametrized by G
by

p(i,j) = u(i,j) =
k∑

m=1

ηim em,m+j, v(i,j) = u(i,j) =
k∑

m=1

η−im em,m+j.

Here {eij} ki,j=1 means the usual matrix units in Mk(C). It is easy to check that

the above matrices satisfy the conditions in Kac-Paljutkin [5], hence we have a 2k2

dimensional Kac algebra K = (M,Γ, κ, ϕ) whose structure is given by the following:

M =
⊕

(i,j)∈G
Ce(i,j) ⊕ Mk(C),
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FINITE DIMENSIONAL KAC ALGEBRAS 1141

where {e(i,j)}(i,j)∈G denotes the 1-dimensional central minimal projections,

Γ(e(i,j)) =
∑

(m,n)∈G
e(m,n) ⊗ e(i−m,j−n)

+
1

k

k∑
m,n,s,t=1

(u(i,j))m,s (u(i,j))n,t emn ⊗ est, (i, j) ∈ G,

Γ(X) =
∑

(i,j)∈G
e(−i,−j) ⊗ u(i,j) X u ∗

(i,j)

+
∑

(i,j)∈G
v(i,j) X v ∗

(i,j) ⊗ e(i,j), X ∈Mk(C),

κ(e(i,j)) = e(−i,−j), (i, j) ∈ G,
κ(X) = tX, X ∈Mk(C),

where tX means the transpose of X ,

ϕ

 ∑
(i,j)∈G

x(i,j) e(i,j) + (xij)
k
i,j=1

 =
1

2k2

 ∑
(i,j)∈G

x(i,j) + k
k∑
i=1

xii

 .

3. The dual Kac algebra

In this section, we shall compute the dual of the Kac algebra K = (M,Γ, κ, ϕ)
constructed in the previous section. It is sufficient to calculate the convolution
structure in M .

Let ∗ be the convolution product of M and # the involution of M , that is, they
are defined by the following relations :

〈a, x ∗ y〉 = 〈Γ(a), x⊗ y〉

= (ϕ⊗ ϕ)(Γ(a)(x⊗ y)), x, y, a ∈M,

x# = κ(x∗) = κ(x)∗, x ∈M.

Lemma 1. Let A = (aij), B = (bij) ∈Mk(C). Then we have

(i) e(i,j) ∗ e(i′,j′) =
1

2k2
e(i+i′,j+j′),

(ii) e(i,j) ∗A =
1

2k2

k∑
m,n=1

ηi(m−n) am+j,n+j emn,

(iii) A ∗ e(i,j) =
1

2k2

k∑
m,n=1

ηi(m−n) am−j,n−j emn,

(iv) A ∗B =
∑

(i,j)∈G
c(i,j) e(i,j),

where

c(i,j) =
1

2k

k∑
m,n=1

η−i(m−n)am,n bm+j,n+j .
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Hence, for X =
∑

(i,j)∈G
x(i,j) e(i,j) +(xij)

k
i,j=1 and Y =

∑
(i,j)∈G

y(i,j) e(i,j) +(yij)
k
i,j=1,

we get

X ∗ Y =
∑

(i,j)∈G
z(i,j) e(i,j) + (zij)

k
i,j=1,

where

z(i,j) =
1

2k2

∑
(m,n)∈G

x(i−m,j−n) y(m,n) +
1

2k

k∑
m,n=1

η−i(m−n) xm,n ym+j,n+j ,

zmn =
1

2k2

 ∑
(i,j)∈G

ηi(m−n)
(
x(i,j) ym+j,n+j + y(i,j) xm−j,n−j

) .

Proof. Let X =
∑

(m,n)∈G
x(m,n) e(m,n) + (xmn) k

m,n=1 ∈M .

(i) We compute

〈X, e(i,j) ∗ e(i′,j′)〉 = 〈Γ(X), e(i,j) ⊗ e(i′,j′)〉
= (ϕ ⊗ ϕ)

(
Γ(X)(e(i,j) ⊗ e(i′,j′))

)
=

(
1

2k2

)2

x(i+i′,j+j′)

=
1

2k2
ϕ
(
X e(i+i′,j+j′)

)
=

〈
X,

1

2k2
e(i+i′,j+j′)

〉
.

Hence

e(i,j) ∗ e(i′,j′) =
1

2k2
e(i+i′,j+j′), (i, j), (i′, j′) ∈ G.

(ii) Since

〈X, e(i,j) ∗A〉 = (ϕ⊗ ϕ)
(
Γ(X) (e(i,j) ⊗A)

)
=

1

2k2
ϕ
(
u(−i,−j) (xmn)u ∗

(−i,−j)A
)

=
1

2k2
ϕ
(

(xmn)u ∗
(−i,−j)Au(−i,−j)

)
=

〈
X,

1

2k2
u ∗

(−i,−j)Au(−i,−j)

〉
=

〈
X,

1

2k2
u(i,j) Au

∗
(i,j)

〉
,

we get

e(i,j) ∗A =
1

2k2
u(i,j)Au

∗
(i,j)

=
1

2k2

k∑
m,n=1

ηi(m−n) am+j,n+j emn.

(iii) follows from a similar calculation.
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(iv) Since

〈X,A ∗B〉
= (ϕ⊗ ϕ)(Γ(X)(A ⊗B))

=
1

k

∑
(i,j)∈G

x(i,j)

k∑
p,q,r,s=1

(p(i,j))p,r (p(i,j))q,s (ϕ⊗ ϕ)((epq ⊗ ers)(A ⊗B))

=
∑

(i,j)∈G

1

2k2
x(i,j)

(
1

2k

k∑
p,q,r,s=1

(p(i,j))p,r (p(i,j))q,s aqp bsr

)

=

〈
X,

∑
(i,j)∈G

(
1

2k

k∑
p,q,r,s=1

(p(i,j))p,r (p(i,j))q,s aqp bsr

)
e(i,j)

〉
,

we have

A ∗B =
∑

(i,j)∈G

(
1

2k

k∑
p,q,r,s=1

(p(i,j))p,r (p(i,j))q,s aqp bsr

)
e(i,j)

=
∑

(i,j)∈G

(
1

2k

k∑
m,n=1

η−i(m−n) am,n bm+j,n+j

)
e(i,j).

Lemma 2. Let X =
∑

(i,j)∈G
x(i,j) e(i,j) + (xij)

k
i,j=1 ∈M .

(i) X ∗X if and only if
x(i,j) =

1

2k2

∑
(m,n)∈G

x(i−m,j−n) x(m,n) +
1

2k

k∑
m,n=1

η−i(m−n) xm,n xm+j,n+j ,

xm,n =
1

2k2

 ∑
(i,j)∈G

ηi(m−n) x(i,j) (xm+j,n+j + xm−j,n−j)

 .

(ii) X# = Xif and only if {
x(−i,−j) = x(i,j),
xij ∈ R.

Proof. (i) follows from Lemma 1.
(ii) follows from the definition of the involution #.

3.1. The case k : odd. We first compute the center of M with respect to the
convolution product.

Lemma 3. Let Z(M, ∗) denote the center of M with respect to the convolution ∗.
Then we have

Z(M, ∗)

=

 ∑
(i,j)∈G

x(i,j) e(i,j) + (xij)
k
i,j=1

∣∣∣∣ x(i,−j) = x(i,j), i, j = 0, 1, · · · , k − 1
xi+n,j+n = xi,j , i, j, n = 1, 2, · · · , k

 .
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In particular,

dimZ(M, ∗) =
k(k + 3)

2
.

Proof. Let X =
∑

(i,j)∈G
x(i,j) e(i,j) + (xij)

k
i,j=1 ∈ Z(M, ∗). Let (m,n) ∈ G be fixed.

Then the equation e(m,n) ∗X = X ∗ e(m,n) implies

xi+n,j+n = xi,j , i, j, n = 1, 2, · · · , k.
Moreover, since A ∗X = X ∗A for any A ∈Mk(C), we obtain

x(i,−j) = x(i,j), i, j = 0, 1, · · · , k − 1.

Lemma 4. Let l ∈ {0, 1, · · · , k − 1}. If we set

pl,+ =
∑

(i,j)∈G
ηil e(i,j) +

k∑
m=1

em,m+l

and

pl,− =
∑

(i,j)∈G
ηil e(i,j) −

k∑
m=1

em,m+l,

then pl,±’s are 1-dimensional central projections.

Proof. The assertion follows from a direct computation.

Lemma 5. Let u ∈ {0, 1, · · · , k − 1} and v ∈ {1, 2, · · · , k−1
2 }. Put

pu,v = 2
∑

(i,j)∈G
(ηiu+jv + ηiu−jv) e(i,j).

Then pu,v’s are 2-dimensional central minimal projections. Furthermore, a system
of matrix units {eu,vs,t} 2

s,t=1 in M ∗ pu,v ∼= M2(C) is given by

eu,v1,1 = 2
∑

(i,j)∈G
ηiu+jv e(i,j),

eu,v1,2 = 2
k∑

m=1

η−mv em,m+u,

eu,v2,1 = 2
k∑

m=1

ηmv em,m+u,

eu,v2,2 = 2
∑

(i,j)∈G
ηiu−jv e(i,j).

Proof. Direct computations.

Summing up the calculations, we have

Theorem 6. The algebraic structure of M̂ is given by

M̂ = C⊕C⊕ · · · ⊕C︸ ︷︷ ︸
2k

⊕M2(C)⊕M2(C)⊕ · · ·M2(C)︸ ︷︷ ︸
k(k−1)

2

.
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3.2. The case k : even.

Lemma 7. The center Z(M, ∗) of M with respect to ∗ is given by

Z(M, ∗)

=

 ∑
(i,j)∈G

x(i,j) e(i,j) + (xij)
k
i,j=1

∣∣∣∣ x(i,−j) = x(i,j), i, j = 0, 1, · · · , k − 1
xi+2n,j+2n = xi,j , i, j, n = 1, 2, · · · , k

 .

In particular,

dimZ(M, ∗) =
k(k + 6)

2
.

Proof. Let X =
∑

(i,j)∈G
x(i,j) e(i,j) +(xij)

k
i,j=1 ∈ Z(M, ∗). Then the equality e(m,n) ∗

X = X ∗ e(m,n) for (m,n) ∈ G implies

xi+2n,j+2n = xi,j , i, j, n = 1, 2, · · · , k.

Since A ∗X = X ∗A for A ∈Mk(C), we have

x(i,−j) = x(i,j), i, j = 0, 1, · · · , k − 1.

Lemma 8. Let l ∈ {0, 1, · · · , k − 1}. We set

pl,1 =
∑

(i,j)∈G
ηil e(i,j) +

k∑
m=1

em,m+l,

pl,2 =
∑

(i,j)∈G
ηil e(i,j) −

k∑
m=1

em,m+l,

pl,3 =
∑

(i,j)∈G
(−1)j ηil e(i,j) +

k∑
m=1

(−1)m em,m+l,

pl,4 =
∑

(i,j)∈G
(−1)j ηil e(i,j) −

k∑
m=1

(−1)m em,m+l.

Then pl,i’s are 1-dimensional central projections.

Proof. The result follows from a straightforward calculation.

Lemma 9. Let u ∈ {0, 1, · · · , k − 1} and v ∈ {1, 2, · · · , k2 − 1}. Set

pu,v = 2
∑

(i,j)∈G
(ηiu+jv + ηiu−jv) e(i,j).
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Then it follows that pu,v’s are 2-dimentional central minimal projections. Further-
more, a system of matrix units {eu,vs,t} 2

s,t=1 in M ∗ pu,v is given by

eu,v1,1 = 2
∑

(i,j)∈G
ηiu+jv e(i,j),

eu,v1,2 = 2
k∑

m=1

η−mv em,m+u,

eu,v2,1 = 2
k∑

m=1

ηmv em,m+u,

eu,v2,2 = 2
∑

(i,j)∈G
ηiu−jv e(i,j).

Proof. The assertions follow from a direct computation.

Theorem 10. The algebraic structure of M̂ is given by

M̂ = C⊕C⊕ · · · ⊕C︸ ︷︷ ︸
4k

⊕M2(C)⊕M2(C)⊕ · · ·M2(C)︸ ︷︷ ︸
k(k−2)

2

.

Remark 11. We can compute the paragroup structure of the inclusion associated
with the Kac algebra K = (M,Γ, κ, ϕ). (See Ocneanu [12].)
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