The existence of a maximizing vector for the numerical range of a compact operator
HTML articles powered by AMS MathViewer
- by Uri Fixman, Frank Okoh and G. K. R. Rao
- Proc. Amer. Math. Soc. 124 (1996), 1133-1138
- DOI: https://doi.org/10.1090/S0002-9939-96-03222-4
- PDF | Request permission
Abstract:
Let $X$ be a complex Lebesgue space with a unique duality map $J$ from $X$ to $X^*$, the conjugate space of $X$. Let $A$ be a compact operator on $X$. This paper focuses on properties of $W(A)=\{J(x)(A(x)):\|x\|=1\}$ and $\Lambda (A)=\sup \{\operatorname {Re}\alpha :\alpha \in W(A)\}$. We adapt an example due to Halmos to show that for $X=l_p, 1<p<\infty$, there is a compact operator $A$ on $l_p$ with $W(A)$ the semi-open interval $[-1,0)$. So $\Lambda (A)$ is not attained as a maximum. A corollary of the main result in this paper is that if $X=l_p,1<p<\infty$, and $\Lambda (A)\ne 0$, then $\Lambda (A)$ is attained as a maximum.References
- María D. Acosta and Rafael Payá, Numerical radius attaining operators and the Radon-Nikodým property, Bull. London Math. Soc. 25 (1993), no. 1, 67–73. MR 1190367, DOI 10.1112/blms/25.1.67
- I. D. Berg and Brailey Sims, Denseness of operators which attain their numerical radius, J. Austral. Math. Soc. Ser. A 36 (1984), no. 1, 130–133. MR 720006
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
- Dennis F. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284–314. MR 163143, DOI 10.1090/S0002-9947-1964-0163143-9
- G. de Barra, J. R. Giles, and Brailey Sims, On the numerical range of compact operators on Hilbert spaces, J. London Math. Soc. (2) 5 (1972), 704–706. MR 315495, DOI 10.1112/jlms/s2-5.4.704
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- U. Fixman, F. Okoh, and G. K. R. Rao, An eigenvalue problem for the numerical range of a bounded linear transformation, preprint.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Lawrence A. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005–1019. MR 301505, DOI 10.2307/2373743
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- Rafael Payá, A counterexample on numerical radius attaining operators, Israel J. Math. 79 (1992), no. 1, 83–101. MR 1195254, DOI 10.1007/BF02764803
- G. K. R. Rao, Numerical ranges of linear operators in $L_p$-spaces, Doctoral thesis, Queen’s University, Kingston, Canada, 1974.
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- James P. Williams, Spectra of products and numerical ranges, J. Math. Anal. Appl. 17 (1967), 214–220. MR 203491, DOI 10.1016/0022-247X(67)90146-1
Bibliographic Information
- Uri Fixman
- Affiliation: (U. Fixman and G. K. R. Rao) Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
- Frank Okoh
- Email: okoh@math.wayne.edu
- G. K. R. Rao
- Affiliation: (F. Okoh) Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Received by editor(s): October 3, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1133-1138
- MSC (1991): Primary 47A12
- DOI: https://doi.org/10.1090/S0002-9939-96-03222-4
- MathSciNet review: 1307516