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PETER DUREN AND WALTER HENGARTNER

(Communicated by Albert Baernstein II)

Abstract. A necessary and sufficient condition is found for a complex-valued
harmonic function to be decomposable as an analytic function followed by a
univalent harmonic mapping.

In the theory of quasiconformal mappings, it is proved that for any measurable
function µ with ‖µ‖∞ < 1, the Beltrami equation fz = µfz admits a homeomorphic
solution F , and every solution has the form f = ψ ◦F for some analytic function ψ.
(See [2], Ch. 6, §§1,2.) A complex-valued harmonic function with positive Jacobian
in a domain D is known to satisfy a Beltrami equation of second kind fz = afz,
where a is an analytic function with the property |a(z)| < 1 in D. On the other
hand, every solution of such an equation is harmonic in D. Moreover, if D is
simply connected and ‖a‖∞ < 1 on D, then the equation admits homeomorphic
solutions (see [1]). A nonconstant complex-valued harmonic function f is said to be
sense-preserving if it satisfies fz = afz for some analytic function a with |a(z)| < 1.

Since harmonic functions are preserved under precomposition with analytic func-
tions, the question now arises whether every sense-preserving harmonic function has
the structure f = F ◦ ϕ for some univalent harmonic function F and some ana-
lytic function ϕ. In this paper we give a necessary and sufficient condition for the
existence of such a decomposition.

Recall first that every harmonic function has a local representation of the form
f = h+g, where h and g are analytic. The Jacobian of f is J = |h′|2−|g′|2, and its
dilatation a satisfies g′ = ah′. Thus a nonconstant function f is sense-preserving in
a domain D if and only if J(z) ≥ 0 there. According to a theorem of Lewy [3], the
Jacobian of a univalent harmonic map in the plane can never vanish, so J(z) > 0
for sense-preserving univalent harmonic maps.

It is instructive to begin with two simple examples.

Example 1. Let f be the harmonic polynomial f(z) = z2 + 2
3z

3. Then f has
dilatation a(z) = z, and f is sense-preserving in the unit disk D = {z : |z| < 1}.
We claim that f has no decomposition of the desired form in any neighborhood
of the origin. Suppose on the contrary that f = F ◦ ϕ, where ϕ is analytic near
the origin and F is harmonic and univalent on the range of ϕ. Then F is sense-
preserving because f is. We may suppose without loss of generality that ϕ(0) = 0.
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Then F has a representation F = H + G near the origin, where H and G are
analytic and have power-series expansions

H(ζ) =
∞∑
n=1

Anζ
n and G(ζ) =

∞∑
n=1

Bnζ
n,

with |A1| > |B1| ≥ 0. Since the analytic part of f(z) is H(ϕ(z)) = z2, the function
ϕ must have an expansion of the form

ϕ(z) = c2z
2 + c3z

3 + . . . , c2 = 1/A1.

It follows that G ◦ ϕ has an expansion starting with an even power of z. However,
the given form of f shows that G(ϕ(z)) = 2

3z
3; we have reached a contradiction.

The conclusion is that f has no decomposition f = F ◦ ϕ of the required form in
any neighborhood of the origin.

Example 2. Let f(z) = z2 + 1
2z

4. Now f has dilatation a(z) = z2, so it is sense-
preserving in D. But here f does have a decomposition f = F ◦ ϕ of the desired

form in D, with F (ζ) = ζ + 1
2ζ

2
and ϕ(z) = z2.

We are now ready to state our decomposition theorem.

Theorem 1. Let f be a complex-valued nonconstant harmonic function defined
on a domain D ⊂ C and let a be its dilatation function. Then in order that f
have a decomposition f = F ◦ ϕ for some function ϕ analytic in D and some
univalent harmonic mapping F defined on ϕ(D), it is necessary and sufficient that
|a(z)| 6= 1 on D and a(z1) = a(z2) wherever f(z1) = f(z2). Under these conditions
the representation is unique up to conformal mapping; any other representation

f = F̃ ◦ ϕ̃ has the form F̃ = F ◦ ψ−1 and ϕ̃ = ψ ◦ ϕ for some conformal mapping
ψ defined on ϕ(D).

Note that in Example 1 the dilatation function is univalent, while f is not uni-
valent in any neighborhood of the origin. In Example 2 the univalence of F in the
disk means that f(z1) = f(z2) if and only if z2

1 = z2
2 ; or if and only if a(z1) = a(z2).

Proof of Theorem 1. Suppose first that f = F ◦ ϕ and let A(ζ) be the dilatation
function of F . A direct calculation shows that a(z) = A(ϕ(z)) for all z in D, and it
follows from Lewy’s theorem that |a(z)| 6= 1. Furthermore, f(z1) = f(z2) implies
that ϕ(z1) = ϕ(z2), since F is univalent; so it follows that a(z1) = a(z2).

Conversely, suppose that |a(z)| 6= 1 in D and that f(z1) = f(z2) implies a(z1) =
a(z2). We shall construct the required functions F and ϕ by appeal to the known
theory of Beltrami equations. With no loss of generality we may suppose that
|a(z)| < 1 in D; for otherwise we need only pass to the conjugate function f .

It is easily seen that the problem reduces to finding a univalent function G on
Ω = f(D) for which the composition G ◦ f is analytic on D. Thus our requirement
is that (G ◦ f)z = 0, which reduces to

(Gwa+Gw)fz = 0.

Hence (G◦ f)z = 0 in D if G is chosen to satisfy the Beltrami equation Gw = µGw,
where

µ(w) = −a(f−1(w)).

Although f need not be univalent and so f−1(w) may be multiple-valued, the
hypothesis that a(z1) = a(z2) wherever f(z1) = f(z2) ensures that the composition
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a ◦ f−1 is single-valued. Thus the function µ is well-defined, and the hypothesis
that |a(z)| < 1 implies |µ(w)| < 1 in Ω. Furthermore, supw∈E |µ(w)| < 1 for every
compact subset E ⊂ Ω.

Now let {Dn} be an exhaustion ofD by compact subsets with nonempty interiors:
D1 ⊂ D2 ⊂ . . . and

⋃∞
n=1Dn = D. Letting Ωn = f(Dn), define

µn(w) = −a(f−1(w)), w ∈ Ωn;

and extend µn continuously onto the Riemann sphere Ĉ so that µn(∞) = 0 and

max
w∈Ĉ
|µn(w)| = max

w∈Ωn
|µn(w)| = max

z∈Dn
|a(z)|.

By the general theory of quasiconformal mappings (see [2], Ch. 5), the Beltrami

equationGw = µnGw has a homeomorphic solution Gn in Ĉ such that Gn(∞) =∞.
Fix z0 and z1 in D1 such that f(z0) 6= f(z1). This is possible because f is not
constant in D1. With w0 = f(z0) and w1 = f(z1), define

Hn(w) =
Gn(w)−Gn(w0)

Gn(w1)−Gn(w0)
.

Then Hn is also a homeomorphic solution to the Beltrami equation, normalized to
satisfy Hn(w0) = 0, Hn(w1) = 1, and Hn(∞) = ∞. Consequently (see [2], Ch. 2,
§5), some subsequence of {Hn(w)} converges locally uniformly in Ω to a univalent
function H(w) that satisfies the Beltrami equation Hw = µHw in f(Ω). It follows
that ϕ = H ◦ f satisfies the Cauchy-Riemann equation ϕz = 0, so it is analytic in
D.

To see that F = H−1 is harmonic in ϕ(D), we need only remember that f = F ◦ϕ
was assumed to be harmonic in D. Near any point ζ = ϕ(z) where ϕ′(z) 6= 0, we
can then conclude that F = f ◦ϕ−1 is harmonic, where ϕ−1 is a local inverse. But
F is locally bounded, so the (isolated) images of critical points of ϕ are removable,
and F is harmonic in ϕ(D). This establishes the required decomposition f = F ◦ϕ.

To prove the uniqueness assertion, suppose there were another representation

f = F̃ ◦ ϕ̃ of the prescribed form. Let G = F̃−1, and observe that G is a smooth
function since its inverse is harmonic. Furthermore, the composite function G ◦ f
is analytic and nonconstant, so again G must satisfy the Beltrami equation Gw =
µGw. But then by the uniqueness of quasiconformal mappings with prescribed
complex dilatation (see [2], Ch. 4, §5), we may conclude that G = ψ ◦H for some

function ψ conformal on ϕ(D). In other words, F̃ = F ◦ ψ−1, as claimed. This
completes the proof.

Theorem 1 describes the harmonic functions that have a global decomposition
of the given form. What about the existence of a local decomposition? We have
already mentioned that f is locally univalent near a point z0 if and only if J(z0) 6= 0.
In this case, f admits locally the trivial decomposition f = F ◦ ϕ with F = f and
ϕ(z) = z. Hence we will assume that J(z0) = 0. If |a(z0)| = 1, we know by
Theorem 1 that f has no decomposition of the required form near z0, so we will
suppose that |a(z0)| 6= 1. Passing to the conjugate function f if necessary, we may
assume that |a(z0)| < 1. Since the Jacobian is J = (1 − |a|2)|h′|2, it follows that
h′(z0) = g′(z0) = 0. Without loss of generality, we may take z0 = 0 and f(z0) = 0.
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Then f has the form

f(z) =
∞∑
n=m

anz
n +

∞∑
n=m

bnz
n, |am| > |bm| ≥ 0,

near the origin, for some m ≥ 2. Suppose now that f has a local decomposition
f = F ◦ ϕ, where ϕ is analytic near 0 and F is harmonic and univalent in some
neighborhood of ϕ(0) = 0. Then F has the local structure

F (ζ) =
∞∑
n=1

Anζ
n +

∞∑
n=1

Bnζ
n
, |A1| > |B1| ≥ 0,

and so ϕ must have the form

ϕ(z) =
∞∑
n=m

cnz
n, cm = am/A1.

Comparing coefficients, we find that an = A1cn and bn = B1cn for m ≤ n < 2m,
which gives bman = ambn for m < n < 2m. If in particular bm = 0, then bn = 0 for
m < n < 2m, as in the discussion of Example 1. Our result may be summarized as
follows.

Theorem 2. Let f be a sense-preserving harmonic function in some neighborhood
of a point z0 where its Jacobian J(z0) = 0. Suppose that f has a local decomposition
f = F ◦ ϕ for some functions ϕ analytic near z0 and F harmonic and univalent
near ζ0 = ϕ(z0), where f , F , and ϕ have the structures indicated above for some
m ≥ 2. Then bman = ambn for m < n < 2m.

Although the condition of Theorem 2 is necessary for the existence of a local
decomposition, it is not sufficient, as the following example shows.

Example 3. Let f(z) = 2z2 + z4 + z5 + z2 + z4 + z5. Then m = 2 and a2 = 2,
a3 = 0, b2 = 1, b3 = 0. Thus b2a3 = a2b3 = 0. However, a further comparison of
coefficients gives the contradictory relations

A1c2 = 2B1c2 = 2, c3 = 0, and A1c5 = B1c5 = 1.

This shows that f has no local decomposition at the origin.
We may also apply Theorem 1 to reach the same conclusion. Here

a(z) =
2z + 4z3 + 5z4

4z + 4z3 + 5z4
,

and |a(z)| < 1 near the origin. The equation f(z1) = f(z2) is equivalent to

z2
1 − z2

2 = 2 Re{z2
2 − z2

1 + z4
2 − z4

1 + z5
2 − z5

1},
which is satisfied for instance if z1 = −z2 = it, t > 0. On the other hand, the
equation a(z1) = a(z2) implies that

4(z2
1 − z2

2) = 5(z3
2 − z3

1),

which is not satisfied for z1 = −z2 6= 0. Thus f(z1) = f(z2) does not imply
a(z1) = a(z2), and it follows from Theorem 1 that f has no decomposition of the
required type in any neighborhood of the origin.

It seems likely that a closer study of the given harmonic function f near a critical
point will lead to a necessary and sufficient condition for the existence of a local
decomposition. In this connection, the work of Lyzzaik [4] may be relevant.
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