A decomposition theorem for planar harmonic mappings
HTML articles powered by AMS MathViewer
- by Peter Duren and Walter Hengartner
- Proc. Amer. Math. Soc. 124 (1996), 1191-1195
- DOI: https://doi.org/10.1090/S0002-9939-96-03319-9
- PDF | Request permission
Abstract:
A necessary and sufficient condition is found for a complex-valued harmonic function to be decomposable as an analytic function followed by a univalent harmonic mapping.References
- W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), no. 3, 473–483. MR 850963, DOI 10.1112/jlms/s2-33.3.473
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692.
- Abdallah Lyzzaik, Local properties of light harmonic mappings, Canad. J. Math. 44 (1992), no. 1, 135–153. MR 1152671, DOI 10.4153/CJM-1992-008-0
Bibliographic Information
- Peter Duren
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: duren@umich.edu
- Walter Hengartner
- Affiliation: Département de Mathématiques, Université Laval, Québec, P.Q., Canada G1K 7P4
- Email: walheng@mat.ulaval.ca
- Received by editor(s): October 10, 1994
- Communicated by: Albert Baernstein II
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1191-1195
- MSC (1991): Primary 30C99; Secondary 31A05, 30C65
- DOI: https://doi.org/10.1090/S0002-9939-96-03319-9
- MathSciNet review: 1327008