Finite and $\omega$-resolvability
HTML articles powered by AMS MathViewer
- by Alejandro Illanes
- Proc. Amer. Math. Soc. 124 (1996), 1243-1246
- DOI: https://doi.org/10.1090/S0002-9939-96-03348-5
- PDF | Request permission
Abstract:
A topological space is $k$-resolvable $(2\leq k\leq \omega )$ if $X$ has $k$ disjoint dense subsets. In this paper, we prove that if $X$ is $k$-resolvable for each positive integer $k$, then $X$ is $\omega$-resolvable.References
- J. Ceder and T. Pearson, On products of maximally resolvable spaces, Pacific J. Math. 22 (1967), 31–45. MR 217752
- W. W. Comfort and Li Feng, The union of resolvable spaces is resolvable, Math. Japon. 38 (1993), no. 3, 413–414. MR 1221007
- A. G. El′kin, Resolvable spaces which are not maximally resolvable, Vestnik Moskov. Univ. Ser. I Mat. Meh. 24 (1969), no. 4, 66–70 (Russian, with English summary). MR 0256331
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Eric K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), no. 2, 125–139. MR 1229708, DOI 10.1016/0166-8641(93)90145-4
Bibliographic Information
- Alejandro Illanes
- Affiliation: Instituto de Matematicas Circuito Exterior, Cd. Universitaria Mexico, 04510 D. F. Mexico
- Email: illanes@gauss.matem.unam.mx
- Received by editor(s): April 15, 1994
- Communicated by: Franklin D. Tall
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1243-1246
- MSC (1991): Primary 54B25
- DOI: https://doi.org/10.1090/S0002-9939-96-03348-5
- MathSciNet review: 1327020