Endomorphism rings of simple modules over group rings
HTML articles powered by AMS MathViewer
- by Robert L. Snider
- Proc. Amer. Math. Soc. 124 (1996), 1043-1049
- DOI: https://doi.org/10.1090/S0002-9939-96-03368-0
- PDF | Request permission
Abstract:
If $N$ is a finitely generated nilpotent group which is not abelian-by-finite, $k$ a field, and $D$ a finite dimensional separable division algebra over $k$, then there exists a simple module $M$ for the group ring $k[G]$ with endomorphism ring $D$. An example is given to show that this cannot be extended to polycyclic groups.References
- P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983. MR 696937, DOI 10.1017/CBO9780511661907
- Vasanti A. Jategaonkar, A multiplicative analog of the Weyl algebra, Comm. Algebra 12 (1984), no. 13-14, 1669–1688. MR 743310, DOI 10.1080/00927878408823074
- D. L. Harper, Primitive irreducible representations of nilpotent groups, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 2, 241–247. MR 447386, DOI 10.1017/S0305004100053846
- D. L. Harper, Primitivity in representations of polycyclic groups, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 1, 15–31. MR 569630, DOI 10.1017/S0305004100057327
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original. MR 798076
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 674652
- J. E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), no. 3, 385–447. MR 491797, DOI 10.1112/plms/s3-36.3.385
Bibliographic Information
- Robert L. Snider
- Affiliation: Department of Mathematics Virginia Tech Blacksburg, Virginia 24061-0123
- Email: snider@math.vt.edu
- Received by editor(s): October 17, 1994
- Communicated by: Ken Goodearl
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1043-1049
- MSC (1991): Primary 16S34, 20C05; Secondary 16K20, 16S50
- DOI: https://doi.org/10.1090/S0002-9939-96-03368-0
- MathSciNet review: 1327044