A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable
HTML articles powered by AMS MathViewer
- by R. B. J. T. Allenby and David Doniz
- Proc. Amer. Math. Soc. 124 (1996), 1003-1005
- DOI: https://doi.org/10.1090/S0002-9939-96-03567-8
- PDF | Request permission
Abstract:
We exhibit a counterexample to a recent assertion concerning the subgroup separability of groups in the title. The example also serves as a simplification of work of Gitik and Rips.References
- R. B. J. T. Allenby, The potency of cyclically pinched one-relator groups, Arch. Math. (Basel) 36 (1981), no. 3, 204–210. MR 620508, DOI 10.1007/BF01223691
- Gilbert Baumslag, On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193–209. MR 144949, DOI 10.1090/S0002-9947-1963-0144949-8
- A. M. Brunner, R. G. Burns, and D. Solitar, The subgroup separability of free products of two free groups with cyclic amalgamation, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 90–115. MR 767102, DOI 10.1090/conm/033/767102
- Benny Evans, Cyclic amalgamations of residually finite groups, Pacific J. Math. 55 (1974), 371–379. MR 372040
- R. Gitik, E. Rips, A necessary condition for $A*_{a=b}B$ to be LERF, Israel J. Math. 73 (1991), 123–125. 92g:20046
- Goansu Kim, Cyclic subgroup separability of generalized free products, Canad. Math. Bull. 36 (1993), no. 3, 296–302. MR 1245814, DOI 10.4153/CMB-1993-042-7
- Goansu Kim and James McCarron, On amalgamated free products of residually $p$-finite groups, J. Algebra 162 (1993), no. 1, 1–11. MR 1250523, DOI 10.1006/jabr.1993.1237
- P. C. Wong and H. L. Koay, Generalized free products of $\pi _c$ groups, Rocky Mountain J. Math. 22 (1992), no. 4, 1589–1593. MR 1201112, DOI 10.1216/rmjm/1181072675
- W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), 259–280.
- E. Rips, An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup, Israel J. Math. 70 (1990), no. 1, 104–110. MR 1057271, DOI 10.1007/BF02807222
- N. S. Romanovskiĭ, On the residual finiteness of free products with respect to subgroups. , Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1324–1329 (Russian). MR 0257234
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- C. Y. Tang, On the subgroup separability of generalized free products of nilpotent groups, Proc. Amer. Math. Soc. 113 (1991), no. 2, 313–318. MR 1081099, DOI 10.1090/S0002-9939-1991-1081099-3
Bibliographic Information
- R. B. J. T. Allenby
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
- Email: pmt6ra@leeds.ac.uk
- David Doniz
- Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
- Received by editor(s): May 25, 1994
- Communicated by: Ronald M. Solomon
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1003-1005
- MSC (1991): Primary 20E06, 20E26, 20F18; Secondary 20F10
- DOI: https://doi.org/10.1090/S0002-9939-96-03567-8
- MathSciNet review: 1350930