Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces
HTML articles powered by AMS MathViewer
- by Li Zhong
- Proc. Amer. Math. Soc. 124 (1996), 1459-1465
- DOI: https://doi.org/10.1090/S0002-9939-96-03164-4
- PDF | Request permission
Abstract:
In this paper we construct a closed geodesic in any infinite- dimensional Teichmüller space. The construction also leads to a proof of non-differentiability of the metric in infinite-dimensional Teichmüller spaces, which provides a negative answer to a problem of Goldberg.References
- Clifford J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), no. 2, 389–397. MR 445013
- Clifford J. Earle and James Eells Jr., On the differential geometry of Teichmüller spaces, J. Analyse Math. 19 (1967), 35–52. MR 220923, DOI 10.1007/BF02788708
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI 10.1090/S0002-9947-1994-1214783-6
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- Lisa R. Goldberg, On the shape of the unit sphere in $Q(\Delta )$, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1179–1185. MR 1186987, DOI 10.1090/S0002-9939-1993-1186987-7
- Saul Kravetz, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. Ser. A I 278 (1959), 35. MR 0148906
- Li Zhong, Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces, Complex Variables Theory Appl. 16 (1991), no. 4, 261–272. MR 1105200, DOI 10.1080/17476939108814483
- Li Zhong, Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces (II), Ann. Acad. Sci. Fenn. Series A. I. Math. 18, 355–367.
- Li Zhong, Non-convexity of spheres in infinite-dimensional Teichmüller spaces, Science in China 37 (1994), 924–932.
- H. L. Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 497–499. MR 259115, DOI 10.1073/pnas.65.3.497
- Edgar Reich and Kurt Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
- Kurt Strebel, On quadratic differentials and extremal quasi-conformal mappings, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 223–227. MR 0507848
- Harumi Tanigawa, Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces, Nagoya Math. J. 127 (1992), 117–128. MR 1183655, DOI 10.1017/S0027763000004128
Bibliographic Information
- Li Zhong
- Affiliation: Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
- Email: liz@bepc2.ihep.ac.cn
- Received by editor(s): August 8, 1994
- Received by editor(s) in revised form: October 14, 1994
- Additional Notes: Supported in part by the NSF Grant (Tian-yuan) of China.
- Communicated by: Albert Baernstein II
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1459-1465
- MSC (1991): Primary 30C62; Secondary 32G15, 14H15
- DOI: https://doi.org/10.1090/S0002-9939-96-03164-4
- MathSciNet review: 1301053