THE COST OF COMPUTING INTEGERS

W. DE MELO AND B. F. SVAITER

(Communicated by William W. Adams)

Abstract. We analyse the growth rate of a number theoretic function related to the operational complexity of integers.

The purpose of this note is to answer a question raised by Smale on the cost of computing integers using arithmetic operations. More precisely, let \(\tau : \mathbb{N} \to \mathbb{N} \) be the function that associates to each number \(n \) the minimum number of arithmetic operations (addition, subtraction and multiplication) one needs to obtain \(n \) starting from 1 and 2. Although 2 is obtainable from 1 in one operation, we have included it as a “starting number” (like 1) to simplify our formulas and induction.

Definition. An allowable list of length \(k \) is a list of \(k \) integers \(n_1, n_2, \ldots, n_k \) such that for each \(l \leq k \), there exist integers \(-1 \leq i, j < l \) such that \(n_l = \text{op}(n_i, n_j) \), where \(\text{op} \) is either addition, subtraction or multiplication and \(n_{-1} = 1, n_0 = 2 \).

It follows that \(\tau(n) \leq k \) if and only if there exists an allowable list of length \(k \), \(\{n_1, \ldots, n_k\} \) with \(n_k = n \). Also, \(\tau(n) = k \) if \(\tau(n) \leq k \) but \(\tau(n) \) is not less than or equal to \(k - 1 \).

Proposition 1. (a) \(\log \log(n) \leq \tau(n) \leq 2 \log(n) \), where \(\log \) is the logarithm in base 2.
(b) \(\tau(2^{2^k}) = k = \log(\log(2^{2^k})) \).

Proof. Suppose that \(\tau(n) = k \). Then there exists an allowable list \(\{n_1, \ldots, n_k\} \) with \(n_k = n \). Let us consider the allowable list \(\{m_1, \ldots, m_k\} \), where \(m_i = m_{i-1} \times m_{i-1} \).

By induction we have that \(n_l \leq m_l \) for every \(l \leq k \) because \(m_i \leq m_j \) for \(i < j \).

Therefore, \(n \leq m_k = 2^{2^k} \). Thus, \(\log(\log(n)) \leq k = \tau(n) \). This proves (b) and the first inequality in (a). To prove the second inequality we consider the binary expansion \(n = 2^{k_1} + 2^{k_2} + \cdots + 2^{k_l} \), with \(0 \leq k_1 < \cdots < k_l \). The following is an allowable sequence:

\[\{2, 2^3, \ldots, 2^{k_1}, 2^{k_1} + 2^{k_1-1}, \ldots, 2^{k_1} + \cdots + 2^{k_1} = n\} \]

Hence, \(\tau(n) \leq k_l + l \leq 2 \log(n) \).

Remark. \(\tau(2^n) \leq 2 \log \log(2^n) \). In fact, if \(n = 2^{k_1} + \cdots + 2^{k_l} \), then

\[\{2, 2^2, 2^2, \ldots, 2^{k_1}, 2^{k_1} \times 2^{k_1-1}, \ldots, 2^{k_1} + \cdots + 2^{k_1} = n\} \]

is an allowable list and, therefore, \(\tau(n) \leq k_l + l \leq 2 \log \log(2^n) \).

Received by the editors May 31, 1994 and, in revised form, October 24, 1994.
1991 Mathematics Subject Classification. Primary 11N56, 11A25, 11Y16.
Lemma 1. Let $B(k) = \{ n \in \mathbb{N} : \tau(n) \leq k \}$. Then the cardinality $\#B(k) \leq 3^k \times ((k + 1)!)^2$.

Proof. Let us consider the space $S_k = \{ s = (s_1, \ldots, s_k) \}$, where each $s_l = \{op_l, i_l, j_l\}$ and $op_l \in \{+, \times -\}$, i_l, j_l are integers smaller than l. To each point $s \in S_k$ we can associate an allowable sequence n_1, \ldots, n_k by taking $n_l = op_l(n_{i_l}, n_{j_l})$, starting with $n_{-1} = 1$ and $n_0 = 2$. In particular we have a mapping $\phi : S_k \rightarrow B(k)$ which associates to s the integer n_k constructed above. Since ϕ is onto, it follows that the cardinality of $B(k)$ is at most equal to the cardinality of S_k which is equal to $3^k \times ((k + 1)!)^2$.

Definition. A property P holds for almost all integers if the number of integers smaller than n that do not satisfy P is $n \times o(n)$.

Theorem. If $\epsilon > 0$, then almost all integers n satisfy the property:

$$\tau(n) \geq \frac{\log(n)}{(\log \log(n))^{1+\epsilon}}.$$

Proof. Suppose, by contradiction, that this is not true. Let

$$\psi(n) = \frac{\log(n)}{(\log \log(n))^{1+\epsilon}}.$$

Then, there exists $0 < \rho < 1$ such that, for infinitely many values of m, the cardinality of the set

$$C_m = \{ n \leq m; \tau(n) \leq \psi(n) \}$$

is bigger than $\rho \times m$. If $\psi(m) \leq k < \psi(m) + 1$, then $C_m \subset B_k$. Therefore, by the lemma, $\rho \times m \leq 3^k ((k + 1)!)^2$ for infinitely many values of m. Thus,

$$\rho \times m \leq 3^{\psi(m)+1}(\psi(m)+2)^2(\psi(m)+2)$$

which is a contradiction because a straightforward calculation shows that the above inequality cannot hold for m big enough.

The above theorem answers negatively Smale’s first question: does there exist a polynomial p such that $\tau(n) \leq p(\log \log(n))$?

Smale’s question 2. Is $\tau(k!) \leq p(\log k)$ for some universal polynomial p?

Smale’s question 3. Does there exist a polynomial p such that for each k there exists an m satisfying $\tau(m \times k!) \leq p(\log k)$? In [SS], Shub and Smale proved that a negative answer to this question implies that one cannot find an algorithm having polynomial cost to decide whether a family of polynomials have a common zero, and, by the results of [BSS], this implies that $N \neq NP$ over the complex numbers.

REFERENCES

INSTITUTO DE MATEMATICA PURA E APlicADA, ESTRADA DONA CASTORINA 110, JARDIM BOTANICO, RIO DE JANEIRO, BRAZIL

E-mail address: demelo@impa.br
E-mail address: benar@impa.br