A $d$-dimensional extension of a lemma of Huneke’s and formulas for the Hilbert coefficients
HTML articles powered by AMS MathViewer
- by Sam Huckaba
- Proc. Amer. Math. Soc. 124 (1996), 1393-1401
- DOI: https://doi.org/10.1090/S0002-9939-96-03182-6
- PDF | Request permission
Abstract:
A $d$-dimensional version is given of a $2$-dimensional result due to C. Huneke. His result produced a formula relating the length $\lambda (I^{n+1}/JI^{n})$ to the difference $P_{I}(n+1)-H_{I}(n+1)$, where $I$ is primary for the maximal ideal of a $2$-dimensional Cohen-Macaulay local ring $R$, $J$ is a minimal reduction of $I$, $H_{I}(n)=\lambda (R/I^{n})$, and $P_{I}(n)$ is the Hilbert-Samuel polynomial of $I$. We produce a formula that is valid for arbitrary dimension, and then use it to establish some formulas for the Hilbert coefficients of $I$. We also include a characterization, in terms of the Hilbert coefficients of $I$, of the condition $depth(G(I))\geq d-1$.References
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
- A. Guerrieri, On the depth of certain graded rings associated to an ideal, Ph.D. Dissertation, Purdue University (1993).
- Craig Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), no. 2, 293–318. MR 894879, DOI 10.1307/mmj/1029003560
- David Kirby and Hefzi A. Mehran, A note on the coefficients of the Hilbert-Samuel polynomial for a Cohen-Macaulay module, J. London Math. Soc. (2) 25 (1982), no. 3, 449–457. MR 657501, DOI 10.1112/jlms/s2-25.3.449
- Kazuji Kubota, On the Hilbert-Samuel function, Tokyo J. Math. 8 (1985), no. 2, 439–448. MR 826998, DOI 10.3836/tjm/1270151224
- T. Marley, Hilbert functions of ideals in Cohen-Macaulay local rings, Ph.D. Dissertation, Purdue University (1989).
- Thomas Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal, J. London Math. Soc. (2) 40 (1989), no. 1, 1–8. MR 1028910, DOI 10.1112/jlms/s2-40.1.1
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- Masao Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular local rings, Proc. Cambridge Philos. Soc. 59 (1963), 269–275. MR 146212, DOI 10.1017/S0305004100036884
- D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. 35 (1960), 209–214. MR 110731, DOI 10.1112/jlms/s1-35.2.209
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Akira Ooishi, $\Delta$-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), no. 2, 361–372. MR 909621
- Judith D. Sally, Hilbert coefficients and reduction number $2$, J. Algebraic Geom. 1 (1992), no. 2, 325–333. MR 1144442
- Judith D. Sally, Ideals whose Hilbert function and Hilbert polynomial agree at $n=1$, J. Algebra 157 (1993), no. 2, 534–547. MR 1220782, DOI 10.1006/jabr.1993.1114
- Irena Swanson, A note on analytic spread, Comm. Algebra 22 (1994), no. 2, 407–411. MR 1255875, DOI 10.1080/00927879408824857
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892, DOI 10.1017/S0027763000018225
- Wolmer V. Vasconcelos, Hilbert functions, analytic spread, and Koszul homology, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 401–422. MR 1266195, DOI 10.1090/conm/159/01520
- Yinghwa Wu, Reduction numbers and Hilbert polynomials of ideals in higher-dimensional Cohen-Macaulay local rings, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 47–56. MR 1131477, DOI 10.1017/S0305004100075149
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Bibliographic Information
- Sam Huckaba
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306-3027
- Email: huckaba@math.fsu.edu
- Received by editor(s): June 8, 1994
- Received by editor(s) in revised form: November 8, 1994
- Additional Notes: The author was partially supported by the NSA (#MDA904-92-H-3040).
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1393-1401
- MSC (1991): Primary 13D40, 13A30, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-96-03182-6
- MathSciNet review: 1307529