DEGREE OF IRRATIONALITY OF A PRODUCT OF TWO ELLIPTIC CURVES

HISAO YOSHIHARA

(Communicated by Eric M. Friedlander)

ABSTRACT. We consider the degree of irrationality \(d_r(S)\) of some algebraic surface \(S\). Firstly we give an estimate of \(d_r(S)\) for a surface \(S\) with a structure of a fiber space. Secondly we prove the existence of a nonsingular curve of genus 3 on \(E \times E\) for a certain elliptic curve \(E\) with complex multiplications. As a corollary, we obtain that \(d_r(E \times E) = 3\).

1. INTRODUCTION

Let \(V\) be an \(n\)-dimensional algebraic variety defined over a field \(k\), and let \(k(V)\) be the rational function field of \(V\). The degree of irrationality of \(V\) is defined to be the least number \(m\) such that \(m = [k(V) : k(x_1, \ldots, x_n)]\), where \(x_1, \ldots, x_n\) are algebraically independent elements of \(k(V)\) (cf. [6], [9]). By definition this number is a birational invariant and we denote it by \(d_r(V)\). In other words it is the minimal degree of a dominant rational map from \(V\) to the projective \(n\)-space. In the case when \(n = 1\), \(d_r(V)\) coincides with the gonality of a curve and has been studied mainly for plane curves (see, e.g., [3]).

In what follows we assume that \(k = \mathbb{C}\) and we work in the category of algebraic varieties over \(\mathbb{C}\). When \(n = 2\) and \(d_r(V) = 2\), some results are obtained in [8]. For an abelian variety \(A\), it is proved that \(d_r(A) \geq n + 1\) in [1]. Clearly we have that \(d_r(A) = 2\) if \(n = 1\). It seems to be important to determine the value \(d_r(A)\) when \(n = 2\), but only a few results have been obtained; for example, if \(A\) is a double covering of a Jacobian variety of a curve, then \(d_r(A) = 3\) (see [7]). In this paper we will give an estimate of \(d_r\) for a surface with a structure of a fiber space and prove the existence of a nonsingular curve of genus 3 on \(E \times E\), where \(E\) is a certain elliptic curve with complex multiplications. As a corollary, we obtain that \(d_r(E \times E) = 3\).

2. STATEMENT OF RESULTS

First we present an estimate of \(d_r\) for a surface with a structure of a fiber space.

Proposition 1 (cf. [7]). Let \(S\) and \(C\) be a nonsingular projective surface and curve, respectively. Suppose that there is a surjective morphism \(f: S \to C\), whose general
fiber \(F \) is irreducible. Let \(g(F) \) denote the genus of \(F \). Then we have the following assertions:

1. If \(g(F) = 0 \), then \(d_r(S) = d_r(C) \).
2. If \(g(F) = 1 \) and \(f \) has a section, then \(d_r(S) \leq 2d_r(C) \).
3. If \(g(F) \geq 2 \) and \(d_r(F) = 2 \), then \(d_r(S) \leq 2d_r(C) \).
4. If \(g(F) = 3 \), \(d_r(F) \neq 2 \) and \(f \) has a section, then \(d_r(S) \leq 3d_r(C) \).

If we drop the assumption that \(f \) has a section in (2), then the conclusion does not hold true. For example let \(S \) be a hyperelliptic surface; then it has a structure of an elliptic fiber space with multiple singular fibers. We can shown that

\[
S \not= \text{elliptic fiber space} \quad \text{with multiple singular fibers.}
\]

We can shown that

\[
de_n(S) \not= \text{true.}
\]

For example let

\[
D \not= \text{a nonsingular curve of genus 3 which admits an elliptic involution}
\]

Under the situation above, suppose that at least one of \(a, b, c \) is an even number. Then there exist two elliptic curves

\[
E \not= \text{an integer.}
\]

Hence every \(\xi \) enjoys the condition. For the remaining case, letting \(k \) and \(l \neq 0 \) be rational integers, we have the following.

(i) If \(-m \equiv 1 \) (mod 8), then \(\xi = k + l\omega \) and \(\frac{1}{2} + l\omega \) are the suitable ones.

(ii) If \(-m \equiv 5 \) (mod 8), then \(\xi = k + 2\omega \) and \(\frac{1}{2} + l\omega \) are the suitable ones.

However we notice the following assertion.

Proposition 5. Suppose that \(\xi = \omega \) and \(m = 3, 11, 19, 43, 67 \) or 163. Then there exist no elliptic curves \(E_1 \) and \(E_2 \) satisfying \((E_1, E_2) = 2 \) on \(E \times E \).

Remark 6. When \(m = 3 \) and \(\xi = \omega \), we consider the quotient of \(E \times E \) by the automorphism \((z_1, z_2) \mapsto (\omega z_1, \omega z_2) \). Then the quotient space turns out to be a rational surface and hence \(d_r(E \times E) = 3 \) (cf. [7]).

Example 7. As an application of Theorem 2, we take an example from [2, (1.8)]. Let \(D \) be a nonsingular curve of genus 3 which admits an elliptic involution \(\pi: D \rightarrow E \). Let \(\xi_0 \in D \) be a branchpoint for \(\pi \) and embed \(D \rightarrow J = \text{Pic}^0(D) \) via \(p \mapsto \mathcal{O}_D(p - \xi_0) \). By using \(\xi_0 = \pi\xi_0 \), we identity \(E \rightarrow \text{Pic}^0(E) \) via \(x \mapsto \mathcal{O}_E(x - x_0) \). Then we have a natural injection \(\pi^*: E \rightarrow J \). We put \(A = J/\pi^*E \); then the map

\[
D \mapsto J \rightarrow A
\]

turns into an embedding. Hence we have \(d_r(A) = 3 \).
3. Proof

First we prove Proposition 1. Let us treat the case (1). Since S is birationally equivalent to $C \times \mathbb{P}^1$, we have that $d_r(S) = d_r(C \times \mathbb{P}^1)$. Then we get $d_r(C \times \mathbb{P}^1) = d_r(C)$ (cf. [9]). Proofs of (2), (3) and (4) are done simultaneously. Let \mathcal{K}_S denote the canonical divisor on S and let Γ be the section in (2) and (4). Let \mathcal{F} be the sheaf on S equal to $\mathcal{O}_S(2\Gamma)$, $\mathcal{O}_S(\mathcal{K}_S + \mathcal{F})$ and $\mathcal{O}_S(\mathcal{K}_S - \Gamma)$, corresponding to the cases (2), (3) and (4) respectively. Since $f_*\mathcal{F}$ is a coherent sheaf on C, we have a projective fiber space $\mathbb{P}(f_*\mathcal{F}) \to C$ associated with $f_*\mathcal{F}$ and a rational map $g: S \to \mathbb{P}(f_*\mathcal{F})$. Let X be the image of g. Then we see that X is a ruled surface over C. In the case (2) or (3), the degree of g is 2, hence we conclude that $d_r(S) \leq 2d_r(C)$ by (1). On the other hand, in the case (4), since

$$\dim H^0(F, \mathcal{O}(K_F - F \cap \Gamma)) = h^0(F, \mathcal{O}(K_F - F \cap \Gamma)) = 2$$

for a general fiber F and it is not hyperelliptic, the rational map g has degree 3. Hence, similarly we infer that $d_r(S) \leq 3d_r(C)$.

Next we prove Theorem 2. Let C be the nonsingular curve of genus 3. Since $C^2 = (C, C) = 4$, we see that C is ample and $h^0(A, \mathcal{O}(C)) = 2$ from the Riemann-Roch theorem. The rational map defined by the complete linear system $|C|$ has 4 base points. By blowing-up these points, we get a morphism $f: \tilde{A} \to \mathbb{P}^1$. Clearly f has 4 sections. As we mentioned in the Introduction, we have that $d_r(A) \geq 3$, hence it is sufficient to show that a general fiber is not hyperelliptic. Suppose that except for finitely many fibers every fiber is hyperelliptic. Then we have $d_r(A) = 2$ by (3), which is a contradiction. Hence a general fiber must be non-hyperelliptic, because in the moduli space of curves of genus 3, hyperelliptic ones consist of an analytic subspace. Thus by (4) we obtain $d_r(A) = 3$.

Before the proof of Theorem 3 we provide two lemmas. The next one may be well-known.

Lemma 8. Let E be an elliptic curve on an abelian surface A. Then $h^0(A, \mathcal{O}(E)) = 1$.

Proof. From the exact sequence of sheaves

$$0 \to \mathcal{O}_A(-E) \to \mathcal{O}_A \to \mathcal{O}_E \to 0,$$

we get the long exact sequence of cohomology groups

$$0 \to H^1(A, \mathcal{O}(-E)) \to H^1(A, \mathcal{O}_A) \to H^1(E, \mathcal{O}_E) \to H^2(A, \mathcal{O}(-E)) \to H^2(A, \mathcal{O}_A) \to 0.$$

From this sequence and by the Serre duality theorem, we infer that $h^0(A, \mathcal{O}(E)) = \dim H^1(A, \mathcal{O}(-E)) = h^1(A, \mathcal{O}(-E))$. On the other hand, referring to [4, p. 571], we see that $\dim \ker r$ is the number of linearly independent holomorphic 1-forms on A which vanish on E. Whence we have that $h^1(A, \mathcal{O}(-E)) \leq 1$, which proves the assertion.

Lemma 9. If there are two elliptic curves E_1 and E_2 satisfying $(E_1, E_2) = 2$ on an abelian surface A, then there is a nonsingular curve of genus 3 on A.

Proof. Putting $D = E_1 + E_2$, we see that D is an ample divisor and hence $h^0(A, \mathcal{O}(D)) = 2$. By the above lemma the pencil $|D|$ has no fixed component. Hence by Bertini’s theorem its general member is an irreducible nonsingular curve of genus 3 (cf. [2, (1.4)]).
Now we proceed to the proof of Theorem 3. Let \(\varphi_{\alpha,\beta} : E \to E \times E \) be a morphism defined by \(\varphi_{\alpha,\beta}(z) = (\alpha z, \beta z) \), where \(\alpha \) and \(\beta \) \(\in \text{End}(E) \). Note that \(\text{End}(E) \) is generated by 1 and \(\alpha \) over \(\mathbf{Z} \). Put \(E_{\alpha,\beta} = \varphi_{\alpha,\beta}(E) \). By taking a suitable \((\alpha, \beta, \gamma, \delta) \), we may obtain that \((E_{\alpha,\beta}, E_{\gamma,\delta}) = 2 \). For example \((E_{0,1}, E_{2,\lambda}) = 2 \) if we take \(\lambda \) as follows: In case \(a \) is even, let \(\lambda = a\xi \). On the contrary, in case \(a \) is odd, let \(\lambda = x + y(a\xi) \), where \(x \) and \(y \) \(\neq 0 \) are given as follows: If \(b \) and \(c \) are even, then let \(x \) be even and \(y \) be odd. If \(b \) or \(c \) is odd, then let \(x \) and \(y \) be odd. By simple calculations we see that the number of the elements of the set \(\{(2z, \lambda z) \in E_{2,\lambda} | 2z = 0 \text{ in } E \} \) is 2. Since \(E_{0,1} \) and \(E_{2,\lambda} \) meet transversally, we have that \((E_{0,1}, E_{2,\lambda}) = 2 \). Using Lemma 9, we finish the proof of Theorem 3.

Next we prove Proposition 5. Since \(\text{End}(E_i) \) becomes a maximal order of \(K \) in this case, we make use of the results of [5]. Suppose that such curves \(E_i \) \((i = 1, 2) \) exist. Then \(E_i \) is a translation of \(E_{\alpha_i,\beta_i} \) for some \(\alpha_i, \beta_i \in \text{End}(E) \) (cf. [5, Lemma 1]). Hence

\[
(E_{\alpha_1,\beta_1}, E_{\alpha_2,\beta_2}) = (E_1, E_2) = 2.
\]

Moreover, by [5, Corollary 1 on p. 6], we have that

\[
(E_{\alpha_1,\beta_1}, E_{\alpha_2,\beta_2}) = \frac{N(\alpha_1\beta_2 - \alpha_2\beta_1)}{N(\alpha_1, \beta_1)N(\alpha_2, \beta_2)},
\]

where \(N \) denotes the norm. Clearly we also have that

\[
(E_{\alpha_1,\beta_1}, E_{\alpha_2,\beta_2}) = 2.
\]

We can write \(\sigma_1\alpha_i = c_ia_i, \sigma_1\beta_i = c_ib_i + c_i\omega, \) where \(a_i, b_i, c_i \in \mathbf{Z} \) \((i = 1, 2) \) and we may assume that \((c_ia_i, c_ib_i + c_i\omega) \) form a canonical basis. Then we infer from the above that \(\gamma \gamma' = 2a_1a_2 \), where \(\gamma = (a_1b_2 - b_1a_2) + (a_1 - a_2)\omega \). Since \(2 \) is a prime number in \(K \) and the class number of \(K \) is 1, we see that \(a_1 \) and \(a_2 \) are even numbers. Putting \(a_i = 2a'_i \), we obtain that \(\gamma \gamma' = 2a'_1a'_2 \), where \(\gamma' = (a'_1b'_2 - b'_1a'_2) + (a'_1 - a'_2)\omega \). We can repeat the same argument finitely many times, which gives rise to a contradiction.

Finally we mention a problem concerning \(d_r \).

Problem 10. Find the value \(d_r(A) \) for each abelian surface \(A \). Especially we ask whether the following assertions hold true:

1. Is there an abelian surface \(A \) satisfying \(d_r(A) \geq 4 \)? For example, is it true that \(d_r(E_1 \times E_2) = 4 \) if \(E_1 \) and \(E_2 \) are not isogenous?

2. If two abelian surfaces \(A_1 \) and \(A_2 \) are isogenous, then is it true that \(d_r(A_1) = d_r(A_2) \)?

REFERENCES

Department of Mathematics, Faculty of Science, Niigata University, 950-21 Niigata, Japan

E-mail address: yosihara@geb.ge.niigata-u.ac.jp