Cyclic homology for schemes
Author:
Charles Weibel
Journal:
Proc. Amer. Math. Soc. 124 (1996), 1655-1662
MSC (1991):
Primary 19D55; Secondary 18G60, 14F05
DOI:
https://doi.org/10.1090/S0002-9939-96-02913-9
MathSciNet review:
1277141
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Using hypercohomology, we can extend cyclic homology from algebras to all schemes over a ring . By `extend' we mean that the usual cyclic homology of any commutative algebra agrees with the cyclic homology of its corresponding affine scheme.
- [B]
C. Beckmann, Relative algebraic
-theory and cyclic homology of schemes, preprint 1992.
- [BN] Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- [C] Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- [CE] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. MR 17:1040e
- [EGA] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique III (Première Partie), Publ. Math. IHES 11 (1961). MR 29:1209
- [GdR] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. MR 199194
- [Joy] A. Joyal, Letter to A. Grothendieck, 1984.
- [Joy1] A. Joyal, personal communication.
- [Jar] J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87. MR 906403, https://doi.org/10.1016/0022-4049(87)90100-9
- [L] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970
- [L1] Jean-Louis Loday, Cyclic homology, a survey, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 281–303. MR 925871
- [Sp] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- [T] R. W. Thomason, Algebraic 𝐾-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102
- [W] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
- [W1] C.A. Weibel, The Hodge filtration and cyclic homology, preprint, 1994.
- [WG] Charles A. Weibel and Susan C. Geller, Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991), no. 3, 368–388. MR 1120653, https://doi.org/10.1007/BF02566656
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 19D55, 18G60, 14F05
Retrieve articles in all journals with MSC (1991): 19D55, 18G60, 14F05
Additional Information
Charles Weibel
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 USA
Email:
weibel@math.rutgers.edu
DOI:
https://doi.org/10.1090/S0002-9939-96-02913-9
Keywords:
Cyclic homology,
schemes,
hypercohomology
Received by editor(s):
April 25, 1994
Received by editor(s) in revised form:
November 21, 1994
Additional Notes:
The author was partially supported by NSF grants and is grateful to the Mittag-Leffler Institute for providing the environment needed to finish this research.
Communicated by:
Eric Friedlander
Article copyright:
© Copyright 1996
American Mathematical Society