Cyclic homology for schemes

Author:
Charles Weibel

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1655-1662

MSC (1991):
Primary 19D55; Secondary 18G60, 14F05

DOI:
https://doi.org/10.1090/S0002-9939-96-02913-9

MathSciNet review:
1277141

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using hypercohomology, we can extend cyclic homology from algebras to all schemes over a ring . By `extend' we mean that the usual cyclic homology of any commutative algebra agrees with the cyclic homology of its corresponding affine scheme.

**[B]**C. Beckmann,*Relative algebraic -theory and cyclic homology of schemes*, preprint 1992.**[BN]**M. Bökstedt and A. Neeman,*Homotopy limits in triangulated categories*, Compositio Math.**86**(1993), 209--234. MR**94f:18008****[C]**A. Connes,*Non-commutative differential gometry*, Publ. Math. IHES**62**(1985), 257--360. MR**87i:58162****[CE]**H. Cartan and S. Eilenberg,*Homological Algebra*, Princeton Univ. Press, 1956. MR**17:1040e****[EGA]**A. Grothendieck and J. Dieudonné,*Eléments de Géométrie Algébrique III (Première Partie)*, Publ. Math. IHES**11**(1961). MR**29:1209****[GdR]**A. Grothendieck,*On the de Rham cohomology of algebraic varieties*, Publ. Math. IHES**29**(1966), 351--359. MR**33:7343****[Joy]**A. Joyal,*Letter to A. Grothendieck,*1984.**[Joy1]**A. Joyal, personal communication.**[Jar]**J.F. Jardine,*Simplicial presheaves*, J. Pure Applied Alg.**47**(1987), 35--87. MR**88j:18005****[L]**J.-L. Loday,*Cyclic Homology*, Grund. Math. Wissen. Band 301, Springer-Verlag, 1992. MR**94a:19004****[L1]**J.-L. Loday,*Cyclic homology: a survey*, Banach Center Publications, vol. 18 (Warsaw), 1986, pp. 285--307. MR**89e:18023****[Sp]**N. Spaltenstein,*Resolutions of unbounded complexes*, Compositio Math.**65**(1988), 121--154. MR**89m:18013****[T]**R.W. Thomason,*Algebraic K-theory and étale cohomology*, Ann. Sci. Éc. Norm. Sup.**18 série**(1985), 437--552. MR**87k:14016****[W]**C.A. Weibel,*An introduction to homological algebra*, Cambridge University Press, 1994. MR**95f:18001****[W1]**C.A. Weibel,*The Hodge filtration and cyclic homology*, preprint, 1994.**[WG]**C.A. Weibel and S.C. Geller,*Étale descent for Hochschild and cyclic homology*, Comment. Math. Helv.**66**(1991), 368--388. MR**92e:19006**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
19D55,
18G60,
14F05

Retrieve articles in all journals with MSC (1991): 19D55, 18G60, 14F05

Additional Information

**Charles Weibel**

Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 USA

Email:
weibel@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-02913-9

Keywords:
Cyclic homology,
schemes,
hypercohomology

Received by editor(s):
April 25, 1994

Received by editor(s) in revised form:
November 21, 1994

Additional Notes:
The author was partially supported by NSF grants and is grateful to the Mittag-Leffler Institute for providing the environment needed to finish this research.

Communicated by:
Eric Friedlander

Article copyright:
© Copyright 1996
American Mathematical Society